Resummation of logarithmic contributions in MSSM Higgs-boson mass calculations

Henning Bahl

IMPRS workshop at Max Planck Institute of Physics 29.6.2015

1 Introduction

- MSSM
- M_h as a precision observable
- Calculation of M_h

2 Resummation of logarithms

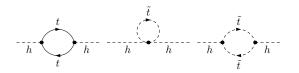
- SM as effective field theory
- Electroweak contributions
- Chargino/Neutralino threshold

$\mathbf{M} \text{inimal } \mathbf{S} \text{upersymmetric } \mathbf{S} \text{tandard } \mathbf{M} \text{odel:}$

- ▶ one of the most common models of BSM physics
- ▶ Supersymmetry relates bosons to fermions
- \blacktriangleright each SM particle gets a superpartner (e.g. stops \leftrightarrow tops)
- ▶ able to address: hierarchy problem, DM, gauge coupling unification,...

Distinct feature

Mass of lightest Higgs boson is calculable in terms of model parameters .


- measured M_h can be used as a precision observable to constrain parameter space of the model
- ▶ at tree-level: $M_h \leq M_Z$
- ▶ large quantum correction shift M_h upwards

\Rightarrow Precision calculation needed to match experimental accuracy

Introduction Resummation of logarithms Conclusion and Outlook

Simplest approach

Calculate corrections to Higgs self-energy diagrammatically

- calculation yields terms $\propto \ln \left(\frac{M_S^2}{m_t^2}\right) (M_S: \text{ stop mass scale})$
- for large $M_S \gg m_t$ logarithms get large

Higher order logarithms are relevant

\Rightarrow resummation of logarithms needed

Higgs mass

$$M_h^2 = 2\lambda (Q = m_t)v^2$$
, how to get $\lambda(m_t)$?

Idea: Effective field theory

 M_S mass scale of SUSY-particles, above \rightarrow MSSM, below \rightarrow SM

- ► Match SM to MSSM at $Q = M_S$: $\lambda(M_S)$ fixed in MSSM $\lambda(M_S) = \lambda_{\text{tree}} + \Delta \lambda_{\text{threshold}}$
- ► In EFT (SM) all SUSY-particles are integrated out → no large logarithms

\Rightarrow large logarithms originate from RGE running:

$$\lambda(M_S) \stackrel{\beta_{\mathbf{SM}}}{\to} \lambda(m_t)$$

Solve system of RGEs $(dg_i/d \ln Q^2 = ...)$ numerically:

\Rightarrow Resummation of large logarithms up to all orders

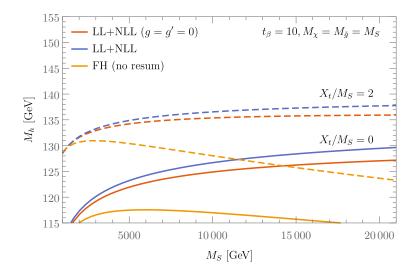
Leading logarithms (LL) \rightarrow 1-loop RGEs, tree-level matching Subleading logarithms (NLL) \rightarrow 2-loop RGEs, 1-loop matching

Non-logarithmic terms \rightarrow combine with Feynman diagrammatic result:

- Avoid double-counting
- ▶ Take care of different renormalization schemes: $OS \leftrightarrow \overline{MS}$

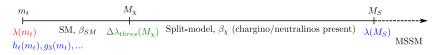
FeynHiggs 2.10: Resummation of logarithms $\propto \alpha_t, \alpha_s$ already included

```
(Hahn et al.: arXiv:1312.4937)
```


Extension I

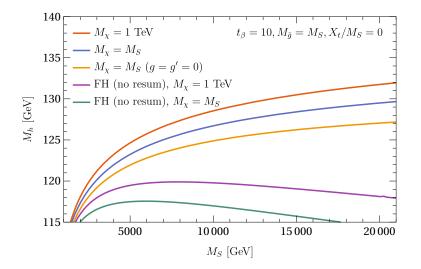
Use of full 2-loop SM-RGEs, including g,g^\prime with all sparticles at scale M_S

- ▶ avoid double-counting of electroweak logarithms at 1-loop
- ▶ new threshold corrections (e.g. Bagnaschi et al.: arXiv:1407.4081)


$$\begin{split} \lambda(M_S) = &\lambda_{\text{tree}} + \Delta \lambda_{\text{stop}} + \Delta \lambda_{\text{heavy Higgs}} + \Delta \lambda_{\text{chargino/neutralino}} \\ &+ \Delta \lambda_{\overline{\text{DR}} \to \overline{\text{MS}}} \end{split}$$

 \blacktriangleright additional terms in $\overline{\mathrm{MS}}\leftrightarrow\mathrm{OS}$ conversion

Extension II


Additional threshold $M_{\chi} \equiv M_1 = M_2 = \mu \ (m_t \ll M_{\chi} < M_S)$, above which charginos/neutralinos contribute to RGE running

▶ gaugino-gaugino-Higgs couplings $\tilde{g}_{1u,1d,2u,2d}$ fixed at $Q = M_S$

(e.g. Giudice et al. arXiv:1108.6077)

• threshold corrections at $Q = M_{\chi}$ $\lambda_{\text{SM}}(M_{\chi}) = \lambda_{\chi}(M_{\chi}) + \Delta \lambda_{\text{chargino/neutralino}}$ $h_{t,\text{SM}}(M_{\chi}) = h_{t,\chi}(M_{\chi}) + \Delta h_{t,\text{chargino/neutralino}}$

Conclusion:

- \blacktriangleright Higgs mass calculable in MSSM \rightarrow large quantum corrections
- ▶ Large SUSY-scale \rightarrow large logarithms \Rightarrow resummation necessary
- ▶ FeynHiggs 2.10: resummation of logarithms $\propto \alpha_t, \alpha_s$
- \blacktriangleright Extension I: resummation of electroweak logarithms up to $\sim 3~{\rm GeV}$
- \blacktriangleright Extension II: intermediate chargino/neutralino threshold up to $\sim 2~{\rm GeV}$

Outlook:

- ► (s)bottom contributions
- additional thresholds
- ▶ next-to-next-to-leading logarithms using 3-loop RGEs