

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Optimization of the B meson vertex resolution for the Belle II experiment

Christian Roca Catalá

Max-Planck Institut für Physik - Belle Group

crisroc@mpp.mpg.de

32nd IMPRS Workshop - Jun 29, 2015

Belle II experiment at SuperKEKB

New Tracking System

- Pixel Vertex Detector (PXD)
- Silicon Vertex Detector (SVD)
- Central Drift Chamber (CDC)

Christian Roca Catalá (MPP-Belle2)

Instantaneous luminosity

- KEKB: $2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- SuperKEKB: $8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

32nd IMPRS Workshop

CP violation and time dependent analysis

Pixel Vertex Detector - Importance of good resolution

What is the contribution of the Vertex resolution?

- Time-dependent analysis depend on the good measurement of Δt obtained from Δz
- Belle: B_{tag} resolution (89 μ m) \sim 30% worse than B_{CP} resolution (63 μ m)
- B_{tag} resolution depends heavily on the fitting algorithm.
- The contribution for Δz that needs to be specially optimized is the B_{tag} vertex

Vertex resolution of the CP side

$$\mathsf{B}^{0}(\bar{\mathsf{B}}^{0}) \rightarrow \mathsf{f}_{CP} = [J/\psi \rightarrow \mu^{+}\mu^{-}]\mathcal{K}_{S}$$

Legend

- Resolution distr. = vertex MC vertex
- 3 Gaussian fit with std. dev σ
- Resolution = weighted avg. σ

Observations

- μ tracks \geq 1 PXD hit
- Resolution improvement from Belle (63 µm) - factor 2.7
- Small **Shift** of 1.8 µm (under investigation)

B_{tag} Vertex Fitting Standard Algorithm

How is the fit performed?

- B_{tag} vertex fit uses the tracks remaining after the reconstruction of the CP side
- **2** No B_{tag} reconstruction is peformed (loss of statistics)
- Algorithm: RAVE Adaptive Vertex Fit (AVF)* with spatial constraints
- * : W. Waltenberger, R. Frühwirth and P. Vanlaer: Adaptive Vertex Fitting. CERN-CMS-NOTE-2008-033 (Jul 2008)

Standard fitting algorithm and spatial constraint

RAVE Adaptive Vertex Fit (AVF) with constraints

All tracks are used and weighted following two criteria:

- **Outlying** and isolated **tracks** are **down-weighted**
- Tracks weighted according their position with respect to the constraint

Weighting works iteratively

What is the constraint?

A **spatial constraint** is defined within which the B is expected to decay

- Ellipsoid of 600 µm long axis
- Centered in the **Beam Spot**
- Along the **boost direction**

Belle II B_{tag} vertex Resolution - Standard algorithm

Dominated by the algorithm! PXD precision not fully used.

Can we do better than this? New algorithm

New Algorithm: Using Flavor Tagging Information

Flavor Tagging Algorithm:

- Take all the **remaining** tracks after the reconstruction of the **CP** side.
- Find the tracks best suited for Flavor Tagging
- Extract probabilistic information from those tracks
 - Prob. of being a daughter from B_{tag}
 - **Prob**. of belonging to a given **decay mode**/category
- Finally return a parameter $\in [-1, 1]$ that reflects how good the flavor can be identified
- Flavor id. crucial to measure C/P

Categories	Targets
Electron	e
(Intermediate Electron)	e^+
Muon	μ^-
(Intermediate Muon)	μ^+
KinLepton	e [—]
Kaon	K-
KaonPion	K $^-$, π^+
SlowPion	π^+
FastPion	π^{-}
MaximumP	ℓ^- , π^-
FSC	ℓ^- , π^+
Lambda	Λ
Total= 10 (12)	

New Algorithm: Single Track Fit (STF)

New algorithm: B_{tag} vertex resolution

New algorithm: Δt distribution

Vertex resolution and optimization using PXD

- B_{CP} Vertex resolution (23 μm): improved a factor 2.7 with respect to Belle (63 μm).
- B_{tag} Vertex resolution with Standard Algorithm (57 μm): improved a factor 1.5 with respect to Belle (89 μm).
- Improvement in Tagged side do not scale as in Reconstructed side
- New algorithm performs a single track fit with higher resolution $(39 \,\mu\text{m})$ with 15% efficiency, improvement by a factor 2.2 with respect to Belle.
- B_{tag} Vertex resolution with Standard Algorithm + Single Track Fit (47 μ m):

improved a factor 1.9 with respect to Belle ($89 \,\mu m$).

Outlook

- Understand the small shift on the CP side vertex
- Improve the single track selection criteria in order to increase the efficiency.
- Improve the B_{tag} vertex fit constraint's parameters to reduce the bias in the resolution

THANKS FOR YOUR ATTENTION!

Preliminary analysis - semileptonic decay

$$B_{tag}
ightarrow \mu^- ar{
u}_\mu D^{(*)+}$$
 and conjugate

USING ALL TRACKS

USING MC MATCHED MUONS

Cut analysis - Generic decay (work still on progress)

$$B_{tag}
ightarrow$$
 generic

Purity analysis

- Perform several **cuts** on the variables of the **tracks**
- Compare with Monte Carlo information
- Aim: Kill the **bad** ones and keep the **good** ones!
- High purity acquainted after selection

Normalized distribution of Purities

B_{tag} Vertex Resolution after cutting

Christian Roca Catalá (MPP-Belle2)

B_{tag} Vertex Resolution using only tracks not coming from B

