Design and Characterisation of Supersonic Nozzles for Shock Front Electron Injection in Laser Wakefield Acceleration

Mathias Hüther

29 June 2015

Ludwig-Maximilians-Universität München

Talk at the 32nd IMPRS Workshop Munich, Germany

1 Laser Wakefield Acceleration: a short overview

- Laser Wakefield Acceleration
- Shock-front Injection

2 Nozzles for LWFA

- 3 Setup and Experiment
 - Experimental Setup
 - Interferometry
 - Tomography

Laser Wakefield Acceleration Shock-front Injection

Laser Wakefield Acceleration: a short overview

- $\bullet\,$ energy gain per length: up to the TeV/m range $_{\rm (SLAC:\,100\;MeV/m)}$
 - \rightarrow smaller and cheaper sources for high energy electrons
 - \rightarrow brilliant X-ray sources

Laser Wakefield Acceleration Shock-front Injection

Laser Wakefield Acceleration: a short overview

- energy gain per length: up to the TeV/m range (SLAC: 100 MeV/m)
 - \rightarrow smaller and cheaper sources for high energy electrons
 - \rightarrow brilliant X-ray sources
- still challenging:
 - stable and precise electron injection
 - monoenergetic electron beams

Laser Wakefield Acceleration Shock-front Injection

LWFA: PIC simulation

Laser Wakefield Acceleration Shock-front Injection

LWFA: PIC simulation

Laser Wakefield Acceleration Shock-front Injection

LWFA: PIC simulation

Laser Wakefield Acceleration Shock-front Injection

Shock-front Injection

- goal: quasi-monoenergetic electrons
 - \longrightarrow spatially and temporally limited injection
 - \longrightarrow shock-fronts in supersonic gas jets
 - \longrightarrow realisation with a razor blade

Laser Wakefield Acceleration Shock-front Injection

Shock-front Injection

- goal: quasi-monoenergetic electrons
 - \longrightarrow spatially and temporally limited injection
 - \longrightarrow shock-fronts in supersonic gas jets
 - \longrightarrow realisation with a razor blade

Nozzles for LWFA

- requirements for supersonic nozzles:
 - orifice diameters: 5 mm and 7 mm
 - maximum gas density at the orifice: $ho_E = 5 \cdot 10^{18} \ {
 m cm^{-3}}$
 - maximum backing pressure: $p_B = 50$ bar
 - extremely uniform gas density profile
 - \bullet adaptation for H_2 and He
- Computation of nozzle parameters by 1D isentropic flow theory

Determination of nozzle parameters

Laval nozzles:

- 4 stainless steel EDM-machined Laval nozzles (~ 800 € each) produced by two different companies
- two different shapes
- \bullet optimized for mono- and diatomic gases (He/Ar or $H_2/N_2)$

Experimental Setup Interferometry Tomography

Experimental Setup

9/18

Experimental Setup Interferometry Tomography

Experimental Setup

Experimental Setup Interferometry Tomography

Interferometry

Mach-Zehnder interferograms:

• gas jet:

• reference image without gas flow:

Experimental Setup Interferometry Tomography

Interferometry

Mach-Zehnder interferograms:

• gas jet:

• reference image without gas flow:

comparison: Mach cone of a supersonic gas jet propagating in air

Experimental Setup Interferometry Tomography

Determination of the phase shift

Experimental Setup Interferometry Tomography

Determination of the phase shift

Experimental Setup Interferometry Tomography

Tomography

- Determination of the phase shift for equidistant angles from 0° to 180°
- Radon Transform + filtered back-projection (convolution)

Experimental Setup Interferometry Tomography

Tomography

- Determination of the phase shift for equidistant angles from 0° to 180°
- Radon Transform + filtered back-projection (convolution)

z = 2.5 mm

z = 3.1 mm

z = 4.3 mm

Experimental Setup Interferometry Tomography

Tomography

3D reconstruction of the gas jet:

• finally: density reconstruction via Gladstone-Dale relation

Experimental Setup Interferometry Tomography

Tomography of Gas Jets with Shock Fronts

- \bullet expected size of shock front: $\sim 5~\mu m$
- blurring by diffraction of the laser at the shock front (length of the shock front up to 5.7 mm)
- adaptation of bandpass filtering algorithm

Experimental Setup Interferometry Tomography

Tomography of Gas Jets with Shock Fronts

3D reconstruction:

nozzle orifice diameter: 5 mm; gas: Ar

Thank you for your attention!

Thank you for your attention!

Further Questions? Feel free to ask!