Study of hard processes in heavy ion collisions at ATLAS IMPRS EPP Selection Workshop

P. Štefko¹

¹Institute of Particle and Nuclear Physics Charles University in Prague

1/18

Quark-Gluon Plasma (QGP)

- Exotic phase of matter with quarks and gluons as relevant degrees of freedom
- ► Existed in very early stages of our Universe (≈ µs after Big Bang)
- Opportunity to study the strong nuclear interaction in extreme conditions
- Very high temperatures and energies needed ($\approx 10^{12}$ K)

How to create these conditions in terrestrial laboratory?

Quark-Gluon Plasma (QGP)

- Exotic phase of matter with quarks and gluons as relevant degrees of freedom
- ► Existed in very early stages of our Universe (≈ µs after Big Bang)
- Opportunity to study the strong nuclear interaction in extreme conditions
- \blacktriangleright Very high temperatures and energies needed (pprox 10¹² K)

How to create these conditions in terrestrial laboratory?

Quark-Gluon Plasma (QGP)

- Exotic phase of matter with quarks and gluons as relevant degrees of freedom
- ► Existed in very early stages of our Universe (≈ µs after Big Bang)
- Opportunity to study the strong nuclear interaction in extreme conditions
- Very high temperatures and energies needed ($\approx 10^{12}$ K)

How to create these conditions in terrestrial laboratory? \downarrow Heavy ion collisions at particle accelerators

Large Hadron Collider

- 4 main detectors at interaction points (ATLAS, CMS, ALICE, LHCb)
- Mainly p+p collisions but couple of weeks per year also p+Pb, Pb+Pb

Study of QGP

- Heavy ion collisions
 - conditions to create QGP
 - tools to study QGP
- Jets cone shaped streams of particles emerging from collisions at high energies (usually two jets with Δφ = 180°)

Jet Quenching

Centrality of Pb+Pb Collision

Impossible to directly measure impact parameter b

- Centrality measure of overlap of the two colliding nuclei
- ► More central (head-on) collisions → higher probability of QGP creation
- At ATLAS determined according to energy deposited in FCal
- ► Quoted in terms of percentiles of total Pb-Pb cross section, e.g. 0 - 10%, 10 - 20%, ... 90 - 100%.

Missing Transverse Momentum $p_{\rm T}$

Experimental analysis

- Following samples of data have been analysed
 - Truth Monte Carlo PYTHIA MC on particle level (no detector)
 - Reconstructed Monte Carlo PYTHIA MC with Geant4 simulation of ATLAS
 - Real data taken by ATLAS in 2011
- COM energy per nucleon $\sqrt{s_{
 m NN}}=2.76~{
 m TeV}$
- \blacktriangleright Event selection conditions: $E_{\rm T1}>$ 100 GeV, $E_{\rm T2}>$ 25 GeV, $\Delta\phi>2/3\pi$
- Effects taken into account
 - Effectivity of tracking detector
 - Fake jets
 - Misindetification LJ \leftrightarrow SJ

Asymmetry Distribution

• Dijet asymmetry –
$$A_{\rm J}=rac{E_{\rm T1}-E_{\rm T2}}{E_{\rm T1}+E_{\rm T2}}$$

left – high centrality, right – low centrality

• More central \rightarrow bigger discrepancy between MC and data

Monte Carlo vs. Data Projections as a function of centrality

- In data we observe decrease in yield of hard particles in SJ compensated by increased yield of soft particles in SJ
- Effect stronger for central collisions
- In MC only slight centrality dependance (detector and reconstruction effects)

イロト イポト イヨト イヨト

Monte Carlo vs. Data Projections as a function of A_J

• Dijet asymmetry –
$$A_{\rm J}=rac{E_{\rm T1}-E_{\rm T2}}{E_{\rm T1}+E_{\rm T2}}$$

- Imbalance increases with increasing A_J
- To get rid of detector effects do the difference of Data and MC

Data minus MC Reconstructed Projections as a function of A_J

- Observed centrality dependance is now coming only from jet quenching
- ► Central collisions exhibit bigger difference → (♂→ (≧→ (≧→ (≧→)))

Comparison With CMS Results Projections as a function of $A_{\rm J}$

CMS PAS HIN-14-010

Conclusions

- A strong increase in the fraction of highly unbalanced jets has been seen in central Pb-Pb collisions compared with peripheral collisions and model calculations
- A strong increase of yields of highly unbalanced dijets has been shown to be correlated with an increase of production of soft particles associated with the strongly quenched subleading jet
- We hope these results will provide a qualitative and quantitative insight into the transport properties of the medium created in heavy-ion collisions
- Good agreement with previously published results by CMS

Presentation

- (Preliminary) results presented at 18th Conference of Czech and Slovak Physicists
- Final results presented to the ATLAS Heavy lon working group at CERN
- Currently undergoing transformation into ATLAS internal note

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

Thank you for attention!

Questions?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?