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Motivation and previous studies

Main Motivation: AdS/CMT

AdS/CMT

“purely AdS” solutions – translational invariance spoils computations
of transport properties (like DC conductivity)

a solution proposed by [G. T. Horowitz, J. E. Santos, D. Tong] –
translational invariance broken by introduction of spatially modulated
scalar field (”Holographic lattice”)

extensively investigated (ex. [M. Blake, D. Tong, D. Vegh] , [A. Donos,

J.P. Gauntlett])

the lattice is mimicked by a spatially spread (“wide”) source ∼ cos(kx)
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Motivation and previous studies

Our modifications:

1 idea: replace “wide” source with local, point- or line-like source
∼ δ(x)

2 use solutions with local sources to study point-like defect

3 try to obtain lattice constructed from such defects – source
∼
∑
n
δ(x − nxl) – holographic realisation of the Kronig-Penney model

of condensed matter physics
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First approach and ”emergent” Supergravity

Framework: AdS4/CFT3

action

S =
1

16πGn

∫ √
|g | (R − 1/2∇aφ∇aφ− V (φ))

potential V (φ) = −6−φ2 ⇔ cosmological constant & mass m2 = −2

φ(x , y , z) ⇔ operator O(x , y) of dimension ∆ = 2, deforming CFT

near-boundary asymptotic of scalar
φ(x , y , z) = φ1(x , y)φ1(x , y)φ1(x , y)z + φ2(x , y)z2 + ... (in Poincaré coordinates)

the operator deforms CFT by a shift of Lagrangian:

L = LCFT3 +φ1(x , y)φ1(x , y)φ1(x , y)O(x , y)

Its expectation value reads 〈O〉 = φ2(x , y)

focus on single defect concentrated along some line (eg. x=0)
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First approach and ”emergent” Supergravity

Goal:

Implement the boundary condition of type φ1(x , y)φ1(x , y)φ1(x , y) = ηδ(x) (Dirac delta
on line x = 0) in Einstein equations generated by given Action

Previous works with discontinuous BCs in (super)gravity

φ1φ1φ1 = θ(x) and mφ = 0 analytical Janus solutions [D. Bak, M. Gutperle,

S. Hirano]

φ1φ1φ1 = θ(x) and mφ = 0 at T > 0 numerical and analytical Janus black
holes in d = 2 + 1 [D. Bak, M. Gutperle, R. A. Janik]

φ1φ1φ1 = δ(x) and m2
φ = −2 with SUSY, analytical and scale invariant

[E. D’Hoker et al.]

→ various non-trivial p-forms

→ hard to generalise to black hole case (T > 0)

→ not very useful in AdS/CMT
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First approach and ”emergent” Supergravity

“Emergent” supergravity

linearised analysis gives φlin = ηz2

π(x2+z2)
→ suggests conformal

symmetry along defect line (SO(2, 2))

new coordinates
r2 = x2 + z2, tanα = x/z

(φlin(α) = η
π cos2(α))

full solution with this symmetry cannot be found! dynamical
generation of source φ1φ1φ1 ∼ δ(x) + 1/|x |+ ...!

a way out – modification of the scalar potential V (φ)
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First approach and ”emergent” Supergravity

“Emergent” supergravity

Supersymmetric potential

1 SO(2, 2) symmetry fixes uniquely V (φ)

V (φ) = −6 cosh(φ/
√

3)

2 the same potential arises from reduction & truncation of D=11
SUGRA on AdS4 × S7![M. Cvetic et al.]

3 with such potential φ1(x , y)φ1(x , y)φ1(x , y) = ηδ(x) & SO(2, 2) symmetry can be
both fulfilled
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Full Solutions

T = 0 (no horizon)

we take the supersymmetric potential V (φ) = −6 cosh(φ/
√

3) in
action

metric ansatz:

ds2 =
1

A(α)2

(
dα2

p2
+

dr2 − dt2 + dy2

r2

)

solving both using numerics (pseudospectral collocation method on
Chebyschev grid) and perturbative expansion in parameter η = φ(0)
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Full Solutions

T = 0 (no horizon)
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Metric and scalar field for φ(0) = 1.2

Points → numerical solution with N = 47 spectral grid
Lines → fourth order perturbative solution
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Full Solutions

T > 0 case

problem no longer 1-dimensional – we only replace x coordinate with
α = tan(x/z)

we use the most general metric ansatz:

ds2 =
1

z2

[
− (1− z)G (z)H1(α, z)dt2 +

H2(α, z)dz2

(1− z)G (z)

+ S1(α, z)(dα + F (α, z)dz)2 + S2(α, z)dy2

]

with G (z) = 1 + z + z2. DeTurk method stands for gauge-fixing
[M. Headrick, et al.]

numerical method was based on spectral collocation method on
Chebyschev grid [P. Grandclement and J. Novak]
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Full Solutions

T > 0 case

Scalar field (right) and metric component F (α, z) (left) for φ(0) = 1.0.
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Full Solutions

An observable: Entanglement Entropy

Holographic entanglement entropy

[S. Ryu, T. Takayanagi] – EE of some region is proportional to the area of
minimal a surface whose boundary is boundary of that region. For strip of
width 2L around the defect the generic form of EE should be: S = 1

ε −
B
L

A strip for which we calculated entanglement entropy, with a sketch of minimal surface

used in calculation.
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Full Solutions

An observable: Entanglement Entropy
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Left: EE of pure AdS (line) and defect geometry φ(0) = 2. Right: EE difference between

pure AdS and: standard AdS-black hole (red points), defected black hole (blue dots).

Piotr Witkowski (WFAIS UJ) Conformal defects in SUGRA 14 / 18



Conclusions and further directions

Conclusions

We examined a novel setup in numerical GR, and developed methods
to handle it

It turned out that conformal defect exists only in Supergravity (scalar
potential is fixed to be V (φ) = −6 cosh(φ/

√
3))

In the theory with defect, entanglement entropy of a strip is lower
than in theory without it
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Conclusions and further directions

Further directions

Construction of holographic lattice from such local defects

Introduction of nonzero chemical potential (gauge field in bulk)

Computation of various quantities – i.e. optical conductivity or heat
transport
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Conclusions and further directions

Thank you for your attention
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