Analytic de Sitter vacua in maximal Supergravity

Marco Gorghetto Master's thesis under the supervision of Prof. G. Dall'Agata

IMPRS EPP Workshop, Munich June 30, 2015

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 1 / 10

イロト イポト イヨト イヨト

• **Scope**: analysis of supersymmetry breaking patterns of a truncation of maximal Supergravity in D = 4

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 2 / 10

- **Scope**: analysis of supersymmetry breaking patterns of a truncation of maximal Supergravity in D = 4
 - main search: Minkowski and de Sitter (meta)stable vacua

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 2 / 10

(日) (周) (日) (日) (日)

- **Scope**: analysis of supersymmetry breaking patterns of a truncation of maximal Supergravity in D = 4
 - main search: Minkowski and de Sitter (meta)stable vacua
 - uplift of the found vacua to String Theory

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 2 / 10

(日) (周) (日) (日) (日)

- Scope: analysis of supersymmetry breaking patterns of a truncation of maximal Supergravity in D = 4
 - main search: Minkowski and de Sitter (meta)stable vacua
 - uplift of the found vacua to String Theory
- Motivations (1): understand the vacuum selection in String Theory and the general mechanisms of spontaneous supersymmetry breaking

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 2 / 10

- Scope: analysis of supersymmetry breaking patterns of a truncation of maximal Supergravity in D = 4
 - main search: Minkowski and de Sitter (meta)stable vacua
 - uplift of the found vacua to String Theory
- Motivations (1): understand the vacuum selection in String Theory and the general mechanisms of spontaneous supersymmetry breaking
 - focus on a relatively simple (although unrealistic) model

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 2 / 10

∃ → < ∃</p>

- Scope: analysis of supersymmetry breaking patterns of a truncation of maximal Supergravity in D = 4
 - main search: Minkowski and de Sitter (meta)stable vacua
 - uplift of the found vacua to String Theory
- Motivations (1): understand the vacuum selection in String Theory and the general mechanisms of spontaneous supersymmetry breaking
 - focus on a relatively simple (although unrealistic) model
 - need to couple supersymmetric theories to gravity

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 2 / 10

∃ → < ∃</p>

Motivations (2): reproduce (at least) a positive value of the cosmological constant Λ

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 3 / 10

イロト 不得下 イヨト イヨト 二日

Marco Gorghetto

Scope and motivations

- Motivations (2): reproduce (at least) a positive value of the cosmological constant Λ
 - nowadays and during the inflation epoch $\Lambda > 0$

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 3 / 10

> < = > <</p>

Marco Gorghetto

Scope and motivations

- Motivations (2): reproduce (at least) a positive value of the cosmological constant Λ
 - nowadays and during the inflation epoch $\Lambda > 0$
 - producing de Sitter vacua is nontrivial in String Theory

- Motivations (2): reproduce (at least) a positive value of the cosmological constant Λ
 - nowadays and during the inflation epoch $\Lambda > 0$
 - producing de Sitter vacua is nontrivial in String Theory

• In a supergravity theory with $e^{-1}\mathcal{L}=\cdots-V(\phi)$, $\Lambda=V(\phi_0)$

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 3 /

▶ < ∃ ▶ < ∃</p>

3/10

• Local supersymmetric theory with N = 8 supercharges

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 4 / 10

イロト イポト イヨト イヨト

- Local supersymmetric theory with N = 8 supercharges
- Matter content completely fixed by supersymmetry
 - 70 scalars
 - 56 spinors
 - 28 vectors
 - ► 8 gravitinos
 - 1 graviton

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 4 / 10

- Local supersymmetric theory with N = 8 supercharges
- Matter content completely fixed by supersymmetry
 - 70 scalars
 - ► 56 spinors
 - 28 vectors
 - 8 gravitinos
 - 1 graviton

• Sigma-model with target manifold the coset Lie group $E_{7(7)}/SU(8)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Local supersymmetric theory with N = 8 supercharges
- Matter content completely fixed by supersymmetry
 - 70 scalars
 - ► 56 spinors
 - 28 vectors
 - 8 gravitinos
 - 1 graviton
- Sigma-model with target manifold the coset Lie group $E_{7(7)}/SU(8)$
- Descends from M-theory
 - Iow energy limit
 - compactification of extra dimensions on \mathbb{T}^7
- Does not include a scalar potential

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 4 / 10

・ 同 ト ・ ヨ ト ・ ヨ ト

- A scalar potential can be introduced deforming pure supergravity by introducing a gauge group G_g

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 5 / 10

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

- A scalar potential can be introduced deforming pure supergravity by introducing a gauge group G_g
 - ▶ gauge covariant derivatives $\partial_\mu o D_\mu = \partial_\mu + g A_\mu$
 - new terms in δ_{SUSY} and in $\mathcal L$
 - potential $V(\phi)$ of order g^2

Marco Gorghetto

イロト イロト イヨト イヨト 二日

- A scalar potential can be introduced deforming pure supergravity by introducing a gauge group G_g
 - ▶ gauge covariant derivatives $\partial_\mu o D_\mu = \partial_\mu + g A_\mu$
 - new terms in δ_{SUSY} and in ${\cal L}$
 - potential $V(\phi)$ of order g^2
- The parameters of the theory depend on G_g and on its embedding

イロト イロト イヨト イヨト 三日

- A scalar potential can be introduced deforming pure supergravity by introducing a gauge group G_g
 - ▶ gauge covariant derivatives $\partial_\mu o D_\mu = \partial_\mu + g A_\mu$
 - new terms in δ_{SUSY} and in ${\cal L}$
 - potential $V(\phi)$ of order g^2
- The parameters of the theory depend on G_g and on its embedding
- Descends from M-theory
 - more complicated compactifications of extra dimensions in presence of fluxes

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 5 / 10

< ロト (同) (三) (三) 三 三 (二) (.) (

- A scalar potential can be introduced deforming pure supergravity by introducing a gauge group G_g
 - ▶ gauge covariant derivatives $\partial_\mu o D_\mu = \partial_\mu + g A_\mu$
 - new terms in δ_{SUSY} and in ${\cal L}$
 - potential $V(\phi)$ of order g^2
- The parameters of the theory depend on G_g and on its embedding
- Descends from M-theory
 - more complicated compactifications of extra dimensions in presence of fluxes

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 5 / 10

A B A A B A

1. $G_g = SO(8)$ gauged supergravity arising from compactification on S^7 and truncation by the $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 6 / 10

(日) (周) (日) (日) (日)

- 1. $G_g = SO(8)$ gauged supergravity arising from compactification on S^7 and truncation by the $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold
- 2. Isotropic models, i.e. compactification on $\mathbb{T}^7/(\mathbb{Z}_2)^3$

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 6 / 10

- 1. $G_g = SO(8)$ gauged supergravity arising from compactification on S^7 and truncation by the $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold
- 2. Isotropic models, i.e. compactification on $\mathbb{T}^7/(\mathbb{Z}_2)^3$
 - N = 1 supergravity model $n_c = 7, \ \Phi = (S, T_1, T_2, T_3, U_1, U_2, U_3)$ and $n_v = 0$

< ロト (同) (三) (三) 三 三 (二) (.) (

- 1. $G_g = SO(8)$ gauged supergravity arising from compactification on S^7 and truncation by the $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold
- 2. Isotropic models, i.e. compactification on $\mathbb{T}^7/(\mathbb{Z}_2)^3$
 - N = 1 supergravity model $n_c = 7$, $\Phi = (S, T_1, T_2, T_3, U_1, U_2, U_3)$ and $n_v = 0$

•
$$K = -\log(S + \bar{S}) - \sum_{i=1}^{3} \log(T_i + \bar{T}_i) - \sum_{i=1}^{3} \log(U_i + \bar{U}_i)$$

 $\blacktriangleright W = W_0 + W_\alpha \Phi^\alpha + \frac{1}{2!} W_{\alpha\beta} \Phi^\alpha \Phi^\beta + \frac{1}{3!} W_{\alpha\beta\gamma} \Phi^\alpha \Phi^\beta \Phi^\gamma$

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 6 / 10

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ○○○○

SO(8) gauged supergravity: results

	Residual sym	٨	Scalar square masses: $m_{(multiplicity)}^2$
(i)	SO(8)	-3	$-\frac{2}{3}(14)$
(ii)	SO(7)	-4	$2_{(1)}, -\frac{4}{5}_{(6)}, -\frac{2}{5}_{(7)}$
(iii)	SO(6)	$-\frac{25\sqrt{5}}{16}$	$2_{(2)}, -1_{(5)} - \frac{1}{4}_{(4)}, 0_{(3)}$
(iv)	SO(7)	$-5^{3/4}$	$2_{(1)}, -\frac{4}{5}_{(6)}, -\frac{2}{5}_{(7)}$
(v)	G ₂	$-\frac{108}{25}\sqrt{\frac{2}{5}}\sqrt[4]{3}$	$\frac{4+\sqrt{6}}{3}(1), -\frac{11+\sqrt{6}}{18}(6), \frac{4-\sqrt{6}}{3}(1), \frac{-11+\sqrt{6}}{18}(6)$

Table: Vacua of the truncated theory for $G_g = SO(8)$

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 7 / 10

<ロト <回ト < 回ト < 回ト = 三日

1. Constraint: $T_1 = T_2 = T_3 = T$, $U_1 = U_2 = U_3 = U$

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 8 / 10

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- 1. Constraint: $T_1 = T_2 = T_3 = T$, $U_1 = U_2 = U_3 = U$
 - $\Phi = (S, T, U)$
 - $K = -\log(S + \bar{S}) 3\log(T + \bar{T}) 3\log(U + \bar{U})$
 - $\blacktriangleright W = W_0 + W_\alpha \Phi^\alpha + \frac{1}{2!} W_{\alpha\beta} \Phi^\alpha \Phi^\beta + \frac{1}{3!} W_{\alpha\beta\gamma} \Phi^\alpha \Phi^\beta \Phi^\gamma$
 - conditions on the parameters for a vacuum located at the origin $S = T = U = \overline{S} = \overline{T} = \overline{U} = 1$

・ロト (四) (日) (日) (日) (日) (日)

- 1. Constraint: $T_1 = T_2 = T_3 = T$, $U_1 = U_2 = U_3 = U$
 - $\Phi = (S, T, U)$
 - $\mathbf{K} = -\log(S + \bar{S}) 3\log(T + \bar{T}) 3\log(U + \bar{U})$
 - $W = W_0 + W_\alpha \Phi^\alpha + \frac{1}{2!} W_{\alpha\beta} \Phi^\alpha \Phi^\beta + \frac{1}{3!} W_{\alpha\beta\gamma} \Phi^\alpha \Phi^\beta \Phi^\gamma$
 - conditions on the parameters for a vacuum located at the origin $S = T = U = \overline{S} = \overline{T} = \overline{U} = 1$
 - 1.1 General conditions for Minkowski supersymmetric stable vacua • $W_0 = W_S = W_T = W_U = 0$

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 8 / 10

・ロト (四) (日) (日) (日) (日) (日)

- 1. Constraint: $T_1 = T_2 = T_3 = T$, $U_1 = U_2 = U_3 = U$
 - $\Phi = (S, T, U)$
 - $K = -\log(S + \bar{S}) 3\log(T + \bar{T}) 3\log(U + \bar{U})$
 - $W = W_0 + W_\alpha \Phi^\alpha + \frac{1}{2!} W_{\alpha\beta} \Phi^\alpha \Phi^\beta + \frac{1}{3!} W_{\alpha\beta\gamma} \Phi^\alpha \Phi^\beta \Phi^\gamma$
 - conditions on the parameters for a vacuum located at the origin $S = T = U = \overline{S} = \overline{T} = \overline{U} = 1$
 - 1.1 General conditions for Minkowski supersymmetric stable vacua • $W_0 = W_S = W_T = W_U = 0$
 - 1.2 General conditions for Minkowski no-scale vacua • $W_S = \frac{1}{2}W_0, W_T = 0, W_U = \frac{3}{2}W_0, W_0 \neq 0$

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 8 / 10

・ロト (四) (日) (日) (日) (日) (日)

- 1. Constraint: $T_1 = T_2 = T_3 = T$, $U_1 = U_2 = U_3 = U$
 - $\Phi = (S, T, U)$
 - $K = -\log(S + \bar{S}) 3\log(T + \bar{T}) 3\log(U + \bar{U})$
 - $W = W_0 + W_\alpha \Phi^\alpha + \frac{1}{2!} W_{\alpha\beta} \Phi^\alpha \Phi^\beta + \frac{1}{3!} W_{\alpha\beta\gamma} \Phi^\alpha \Phi^\beta \Phi^\gamma$
 - conditions on the parameters for a vacuum located at the origin $S = T = U = \overline{S} = \overline{T} = \overline{U} = 1$
 - 1.1 General conditions for Minkowski supersymmetric stable vacua • $W_0 = W_S = W_T = W_U = 0$
 - 1.2 General conditions for Minkowski no-scale vacua
 - $W_S = \frac{1}{2}W_0, W_T = 0, W_U = \frac{3}{2}W_0, W_0 \neq 0$
 - 1.3 Perturb these conditions to search for de Sitter vacua:
 - $W_0 \to W_0(\epsilon, \lambda), W_S \to W_S(\epsilon, \lambda), W_T \to W_T(\epsilon, \lambda), W_U \to W_U(\epsilon, \lambda)$

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30, 2015 8 / 10

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ○○○○

• Sample of perturbation parameters around a no-scale vacuum:

 $(W_0, W_S, W_T, W_U) = (1, \frac{1}{2} + \epsilon, (1+i)\epsilon, \frac{3}{2} + \lambda)$

- Blue: de Sitter vacua
- Purple: strictly stable vacua

< ロト < 同ト < ヨト < ヨ

 Sample of perturbation parameters around a no-scale vacuum:

 $(W_0, W_S, W_T, W_U) = (1, \frac{1}{2} + \epsilon, (1+i)\epsilon, \frac{3}{2} + \lambda)$

- Blue: de Sitter vacua
- Purple: strictly stable vacua

 Vacua in the unconstrained model (with 7 moduli) for the same value of the perturbation parameters

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

 Sample of perturbation parameters around a no-scale vacuum:

 $(W_0, W_S, W_T, W_U) = (1, \frac{1}{2} + \epsilon, (1+i)\epsilon, \frac{3}{2} + \lambda)$

- Blue: de Sitter vacua
- Purple: strictly stable vacua

- Vacua in the unconstrained model (with 7 moduli) for the same value of the perturbation parameters
 - Just some anti de Sitter vacua become unstable
 - All vacua become marginally stable (with 4 flat directions)

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

Conclusions and outlook

Conclusions and outlook

- We determined analytically a set of de Sitter vacua in a truncation of maximal supergravity.
- How can the vacua be reproduced in the N = 8 landscape?
- Are all of them upliftable to D = 11 supergravity?

Marco Gorghetto

Analytic de Sitter vacua in maximal Supergravity

June 30. 2015 10 / 10