Branes, monodromies and non-geometric backgrounds

Valentí Vall Camell

work to appear together with Dieter Lüst and Stefano Massai

Ludwig Maximilian Universität München V.Vall@physik.uni-muenchen.de

31st IMPRS Workshop. Munich, June 30th, 2015

- String theory symmetries suggest that there may exist backgrounds that cannot be described in terms of classical geometry.
- New exciting properties may arise, such as non-commutativity or non-associativity.
- It is still not well known how to fully describe properties of such backgrounds inside string theory.

- We look for solutions of the string background equations of sigma models at the limit $\alpha' \rightarrow 0 \ (\Rightarrow SUGRA \text{ equations of motion})$
- In particular, we are interested in exotic brane solutions with non-geometric backgrounds around them using the semiflat approximation.
- We develop a method to construct such backgrounds in terms of torus fibrations with arbitrary monodromy.
- We discuss their general properties in terms of an exhaustive classification for all possible monodromies.
- We point out some possible interpretation of the new solutions.

Essential tool for our study: T-Duality

T-duality group in toroidal compactifications: $O(d, d, \mathbb{Z})$

2 dimensional case:

$$O(2,2,\mathbb{Z}) \sim SL(2,\mathbb{Z})_{\rho} \times SL(2,\mathbb{Z})_{\tau} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$$
Complex structure: $\tau = \frac{G_{12}}{G_{11}} + i\frac{\sqrt{\det G}}{G_{11}}$
Kähler structure: $\rho = B + i\sqrt{\det G}$

$$P \rightarrow \frac{a\rho + b}{c\rho + d}$$

General case

T-duality can be generalised to other backgrounds if in one direction there is an isometry. \Rightarrow Buscher rules

Valentí Vall Camell (LMU)

Branes and non-geometric backgrounds

June 30th, 2015 4 / 21

 \mathbb{Z}

Introduction to non-geometric backgrounds.

Valentí Vall Camell (LMU)

Branes and non-geometric backgrounds

June 30th, 2015 5 / 21

T^3 with constant H flux and its duals

J. Shelton, W. Taylor, B. Wecht. [0508133]

- This is not a solution of the equation of motion unless N = 0.
- Choose gauge: $B_{xy} = NZ$ and $B_{ij} = 0$ for $\{ij\} \neq x, y$.
- One has to impose the quantization condition $N \in \mathbb{Z}$.
- Monodromy on the fiber: When $Z \rightarrow Z + 1 \Rightarrow \rho \rightarrow \rho + N$

T-duality chain: $T^3 \xrightarrow{X}$ Nil-manifold \xrightarrow{Y} T-fold

The Nil-manifold

$$ds^{2} = (dX - NZdY)^{2}$$
$$+ dY^{2} + dZ^{2}$$
$$B_{xy} = 0$$

Monodromy on the fiber:

When
$$Z \rightarrow Z + 1 \Rightarrow \tau \rightarrow \tau - N$$

Geometric monodromy

The T-fold

$$ds^{2} = f(Z)(dX^{2} + dY^{2}) + dZ^{2}$$

$$B_{xy} = f(Z)NZ$$

$$f(Z) = \left[1 + (NZ)^2\right]^{-1}$$

Monodromy on the fiber:

$$Z \to Z + 1 \Rightarrow \rho^{-1} \to \rho^{-1} - N$$

Non-geometric monodromy. Volume and B-field get mixed

• Monodromies in τ are always geometric. Monodromies in ρ may be non-geometric

Genuine non-geometric backgrounds

Background with $\tau \rightarrow -1/\tau$, $\rho \rightarrow -1/\rho$

$$\tau(Z) = \frac{\tau_0 \cos(fZ) + \sin(fZ)}{\cos(fZ) - \tau_0 \sin(fZ)}$$

$$\rho(Z) = \frac{\rho_0 \cos(gZ) + \sin(gZ)}{\cos(gZ) - \rho_0 \sin(gZ)}$$

with
$$f,g \in \mathbb{Z} + \frac{1}{4}$$
 and $\rho_0, \tau_0 \in \mathbb{C}$.

- Not T-dual to any known geometric background.
- Fixed point of the transformation at $\tau_0 = \rho_0 = i$.
- Studied as an asymmetric ℤ₂ orbifold CFT (*C.Condeescu, I. Florakis, D. Lüst.* [1202.6366], [1307.0999]).
- Constructed in DFT as a general twisted torus (*F. Haßler, D. Lüst.* [1401.5068]).
- Potential fixes τ_0 and ρ_0 to the fixed point.

Valentí Vall Camell (LMU)

Brane solutions

- We will deal only with backgrounds that are solution of SUGRA equations of motion (Unlike above).
- Find a method to construct brane backgrounds in semiflat approximation with any given monodromy.

$$\underbrace{\frac{\left| 0 \right| 1 \left| 2 \right| 3 \left| 4 \right| 5}{\mathbb{C}} \underbrace{\frac{6}{7} \left| 8 \right| 9}_{\mathbb{C}}}_{\mathbb{C} T^2}$$

Semiflat approximation: Fibered torus with $U(1)^2$ isometries.

- Give an exhaustive classification of such backgrounds using the conjugacy classes of SL(2, ℤ).
- Discuss the validity of such solutions.

General background solution in semiflat approximation

S. Hellerman, J. McGreevy, B. Williams. [0208174]; J. de Boer, M. Shigemori. [1209.6056]

Ansatz

$$ds_{10}^2 = f^2(-dX_0^2 + dX_{12345}^2) + g^2(z,\bar{z})dzd\bar{z} + G_{ab}(z,\bar{z})dX^a dX^b$$

$$H = H_i dX_i \wedge dX_8 \wedge dX_9 \qquad i = 6,7 \quad a = 8,9$$

Solution

$$\begin{aligned} ds_{10}^2 &= -dX_0^2 + dX_{12345}^2 + g^2 dz d\bar{z} + G_{ab} dX^a dX^b \\ H &= H_i dX_i \wedge dX_8 \wedge dX_9 \qquad i = 6,7 \quad a = 8,9 \end{aligned}$$

With

$$g^2 = e^{2\varphi_1}\rho_2\tau_2$$

$$G_{ab} = \frac{\rho_2}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix}$$

$$H_i = \partial_i \rho_1$$

Where $\rho(z) = \rho_1 + i\rho_2$, $\tau(z) = \tau_1 + i\tau_2$ and $\varphi(z) = \varphi_1 + i\varphi_2$ are holomorphic functions of the complex plane

We want to find backgrounds with any possible monodromy *M* ∈ *SL*(2, ℤ)_τ × *SL*(2, ℤ)_ρ: θ → θ + 2π ⇒ (τ, ρ) → *M*[(τ, ρ)]
We classify all of them via τ(z) and ρ(z).

June 30th, 2015 12 / 21

Non-trivial monodromy in ρ and $\tau = i$

One still have to fix the function $\varphi(z)$. Take $\rho(z)$ with monodromy

$$\left(\begin{array}{cc} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{array}\right) \in SL(2,\mathbb{Z})$$

Studying the reduction from 10D to 8D one finds the extra condition:

$$e^{arphi}
ightarrow (c
ho+d)e^{arphi}, ext{ when } heta
ightarrow heta + 2\pi$$

Non-trivial monodromy in τ and $\rho = i$

One can study these cases using the symmetry $\tau \leftrightarrow \rho$.

Non-trivial monodromies in au and ho

Once one knows the solutions for the above cases, then $\varphi = \varphi^{(\rho)} + \varphi^{(\tau)}$

Valentí Vall Camell (LMU)

Constructing new backgrounds with $\tau=i$ and arbitrary monodromy in ρ

The construction procedure

- Take a monodromy $e^m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$. The matrix m always exist since $SL(2, \mathbb{Z})$ is connected.
- Construct the matrix $e^{m\frac{\theta}{2\pi}} = \begin{pmatrix} \tilde{a}(\theta) & b(\theta) \\ \tilde{c}(\theta) & \tilde{d}(\theta) \end{pmatrix}$. It is an $SL(2,\mathbb{Z})$ matrix when $\theta = 2\pi n, n \in \mathbb{Z}$.
- **3** Construct the function $\rho(r, \theta) = \frac{\tilde{a}(\theta)\rho_0(r) + b(\theta)}{\tilde{c}(\theta)\rho_0(r) + \tilde{d}(\theta)}$.
- **9** Impose Cauchy-Riemann conditions on $\rho(r, \theta)$ to fix $\rho_0(r)$.
- So Construct the function $e^{\varphi(r,\theta)} = (\tilde{c}(\theta)\rho_0(r) + \tilde{d}(\theta))e^{\varphi_0(r)}$.
- Onstruct the background.

Classification. The $SL(2,\mathbb{Z})$ conjugacy classes

• Conjugacy class of
$$a \in SL(2, \mathbb{Z})$$
:
 $[a] = \{M \mid M = gag^{-1}, g \in SL(2, \mathbb{Z})\}$

• A useful tool for studying conjugacy classes using the **Trace** of the matrix. Traces does not change under conjugation. However, two matrices with same trace can be in different conjugacy classes.

There are infinite conjugacy classes. They can be classified into:

Elliptic: Tr <i>M</i> < 2	- Two conjugate complex eigenvalues
	- $M^n = \mathbb{I}$, for finite <i>n</i> (finite order)
	- <i>M</i> has fixed points
Parabolic: $ \text{Tr } M = 2$	- Eigenvalues: ± 1
	- Infinite order
Hyperbolic: $ \text{Tr } M > 2$	- 2 real eigenvalues
	- Infinite order
	- When applying M several times $ ho$ grows
	almost exponentially

Valentí Vall Camell (LMU)

Examples I: Parabolic monodromy in ρ . $\tau = i$

All elements in $\left[\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \right]$ can be written like:

$$M_{p,q}=\left(egin{array}{cc} 1+pq & p^2\ -q^2 & 1-pq \end{array}
ight) \quad p,q\in\mathbb{Z}$$

Function with the desired monodromy:

$$ho(r, heta)=-rac{(pqrac{ heta}{2\pi}+1)
ho_0(r)+p^2rac{ heta}{2\pi}}{q^2rac{ heta}{2\pi}
ho_0(r)+pqrac{ heta}{2\pi}-1}$$

Imposing Cauchy Riemann conditions: (Define $H_q = \frac{q^2}{2\pi}$ and $H_p = \frac{p^2}{2\pi}$)

$$\begin{array}{c|c} q \neq 0 & q = 0 \\ \hline \rho = -\sqrt{\frac{H_p}{H_q}} - \frac{1}{H_q\theta + i\left(1 + H_q \ln\left(\frac{\mu}{r}\right)\right)} & \rho = H_p\theta + i\left(1 + H_p \ln\left(\frac{\mu}{r}\right)\right) \end{array}$$

Background: (Define $h_{p,q}(r) = 1 + H_{p,q} \ln \left(\frac{\mu}{r}\right)$)

• $q \neq 0$

$$ds^{2} = dX_{012345}^{2} + h_{q}(r)dX_{67}^{2} + \frac{h_{q}(r)}{h_{q}^{2}(r) + (H_{q}\theta)^{2}}dX_{89}^{2}$$
$$B = \left(-\sqrt{\frac{H_{p}}{H_{q}}} - \frac{H_{q}\theta}{h_{q}^{2}(r) + (H_{q}\theta)^{2}}\right)dX_{8} \wedge dX_{9}$$

• *q* = 0

$$ds^{2} = dX_{012345}^{2} + h_{p}(r)dX_{67}^{2} + h_{p}(r)dX_{89}^{2}$$

$$B = H_{p}\theta \ dX_{8} \wedge dX_{9}$$

• $(p,q) = (1,0) \leftrightarrow$ Smeared NS5 $(p,q) = (0,1) \leftrightarrow$ Q-brane (J. de Boer, M. Shigemori. [1209.6056]; F. Haßler, D. Lüst [1303.1413])

• Geometric case: $(p,q) = (1,0), (0,1) \leftrightarrow$ Smeared KK-monopoles.

• Solutions only trustable up to some scale. (Volume becomes negative)

Valentí Vall Camell (LMU)

17 / 21

Holomorphic function with the desired monodromy:

$$\rho(r,\theta) = \frac{\rho_0(r)\cos(\theta/4) + \sin(\theta/4)}{\cos(\theta/4) - \rho_0(r)\sin(\theta/4)}$$

$$\tau(r,\theta) = \frac{\tau_0(r)\cos(\theta/4) + \sin(\theta/4)}{\cos(\theta/4) - \tau_0(r)\sin(\theta/4)}$$

$$\rho_0 = au_0 = -i \coth\left(rac{1}{4}\ln(r) + C
ight)$$

- The background is genuine non-geometrical. Not dual to any known geometric one.
- We were able to reproduce the genuine non-geometric background discussed above for the T^2 fibration over S^1 .

Solution on the fiber

$$G_{ab} = \begin{pmatrix} 1 & \frac{\sin(\theta/2)}{\cos(\theta/2) - \cosh\left(C + \frac{\log(r)}{2}\right)} \\ \frac{\sin(\theta/2)}{\cos(\theta/2) - \cosh\left(C + \frac{\log(r)}{2}\right)} & \frac{2e^{C}\sqrt{r}\cos(\theta/2) + e^{2C}r + 1}{-2e^{C}\sqrt{r}\cos(\theta/2) + e^{2C}r + 1} \end{pmatrix}$$

$$B_{89} = \frac{\sin(\theta/2)}{\cos(\theta/2) - \cosh\left(C + \frac{\log(r)}{2}\right)}$$

Valentí Vall Camell (LMU)

Branes and non-geometric backgrounds

June 30th, 2015 19 / 21

イロト イ団ト イヨト イヨト

æ

- We investigated exotic branes with arbitrary monodromies.
- We gave an exhaustive classification of all of them.
- We derived explicit solutions for significant examples in each class.
- Picture with a brane source for the flux in contrast with turning on fluxes on a cycle.
- Monodromy becomes "charge" of the brane.
- The group structure of $SL(2,\mathbb{Z})$ suggests that this branes could be understood as bound states of NS5 and Q-brane.
- It is crucial to better understand the microscopic description of Q-branes in string theory.

THANK YOU

æ

-

The NS5 solution of supergravity equations in 10D

 r_{\perp} transversal radial direction (6,7,8,9).

$$h(r_{\perp})=1+rac{H}{r_{\perp}^2}, \hspace{1em} H \hspace{1em} ext{constant}$$

$$\underbrace{\frac{0|1|2|3|4|5}{\mathbb{C}}}_{\mathbb{C}}\underbrace{\begin{array}{c}6|7|8|9|}_{\mathbb{C}}\\ T^2\end{array}$$

This is a well defined object in string theory so it's a good starting point.

Valentí Vall Camell (LMU)

NS5 in semi-flat approximation

Compactify directions 8 and 9 and take the limit $r \gg R_8$, R_9 :

$$(X^{0}, ..., X^{5})^{\dagger}$$
 (X^{8}, X^{9}) (X^{6}, X^{7}) (r, θ)

The smeared NS5

$$\begin{array}{lcl} ds^2_{NS5} &=& dX^2_{012345} \\ && +h(r)dX^2_{67}+h(r)dX^2_{89} \\ \mathrm{e}^{2\phi} &=& h(r) \\ B &=& H\theta \ dX_8 \wedge dX_9, \end{array}$$

With,

$$h(r) = 1 + H \ln \frac{\mu}{r}$$

Quantization condition: $2\pi H \in \mathbb{Z}$

Fibered torus with $U(1)^2$ isometries.

Monodromy on the fiber:
When
$$\theta \rightarrow \theta + 2\pi \Rightarrow \rho \rightarrow \rho + N$$

T-duality chain: Smeared NS5 $\xrightarrow{X^9}$ Smeared KK-monopole $\xrightarrow{X^8}$ Q brane

The KK monopole

$$ds_{KK}^{2} = dX_{012345}^{2} + h(r)dX_{67}^{2} + \frac{1}{h(r)}(dX_{9} + H\theta dX_{8})^{2} + h(r)dX_{8}^{2}$$

$$e^{2\phi} = 1$$

$$H = 0$$

The Q brane

J. de Boer, M. Shigemori. [1209.6056]; F. Haßler, D. Lüst [1303.1413]

$$ds_Q^2 = dX_{012345}^2 + h(r)dX_{67}^2 + \frac{h(r)}{h^2(r) + (H\theta)^2}dX_{89}^2$$

$$e^{2\phi} = \frac{h(r)}{h^2(r) + (H\theta)^2}$$

$$B = -\frac{H\theta}{h^2(r) + (H\theta)^2}dX_8 \wedge dX_9,$$