Branes, monodromies and non-geometric backgrounds

Valentí Vall Camell

work to appear together with Dieter Lüst and Stefano Massai

Ludwig Maximilian Universität
München
V.Vall@physik.uni-muenchen.de

31st IMPRS Workshop. Munich, June 30th, 2015

Motivation

- String theory symmetries suggest that there may exist backgrounds that cannot be described in terms of classical geometry.
- New exciting properties may arise, such as non-commutativity or non-associativity.
- It is still not well known how to fully describe properties of such backgrounds inside string theory.

What we do

- We look for solutions of the string background equations of sigma models at the limit $\alpha^{\prime} \rightarrow 0(\Rightarrow$ SUGRA equations of motion)
- In particular, we are interested in exotic brane solutions with non-geometric backgrounds around them using the semiflat approximation.
- We develop a method to construct such backgrounds in terms of torus fibrations with arbitrary monodromy.
- We discuss their general properties in terms of an exhaustive classification for all possible monodromies.
- We point out some possible interpretation of the new solutions.

Essential tool for our study: T-Duality

T-duality group in toroidal compactifications: $O(d, d, \mathbb{Z})$

2 dimensional case:
$O(2,2, \mathbb{Z}) \sim S L(2, \mathbb{Z})_{\rho} \times S L(2, \mathbb{Z})_{\tau} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
$S L(2, \mathbb{Z})$ action:
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z})$
$\rho \rightarrow \frac{a \rho+b}{c \rho+d}$

General case

T-duality can be generalised to other backgrounds if in one direction there is an isometry. \Rightarrow Buscher rules

Introduction to non-geometric backgrounds.

T^{3} with constant H flux and its duals

J. Shelton, W. Taylor, B. Wecht. [0508133]

T^{3} with N units of H-flux

$$
\begin{aligned}
d s^{2} & =d X^{2}+d Y^{2}+d Z^{2} \\
H & =N d X \wedge d Y \wedge d Z
\end{aligned}
$$

N constant. Compactification:
$X \cong X+1, Y \cong Y+1, Z \cong Z+1$

- This is not a solution of the equation of motion unless $N=0$.
- Choose gauge: $B_{x y}=N Z$ and $B_{i j}=0$ for $\{i j\} \neq x, y$.
- One has to impose the quantization condition $N \in \mathbb{Z}$.
- Monodromy on the fiber: When $Z \rightarrow Z+1 \Rightarrow \rho \rightarrow \rho+N$

T-duality chain: $T^{3} \xrightarrow{X}$ Nil-manifold \xrightarrow{Y} T-fold

The T-fold

The Nil-manifold

$$
\begin{aligned}
d s^{2}= & (d X-N Z d Y)^{2} \\
& +d Y^{2}+d Z^{2} \\
B_{x y}= & 0
\end{aligned}
$$

Monodromy on the fiber:

$$
\text { When } Z \rightarrow Z+1 \Rightarrow \tau \rightarrow \tau-N
$$

Geometric monodromy

$$
\begin{aligned}
d s^{2} & =f(Z)\left(d X^{2}+d Y^{2}\right)+d Z^{2} \\
B_{x y} & =f(Z) N Z \\
& f(Z)=\left[1+(N Z)^{2}\right]^{-1}
\end{aligned}
$$

Monodromy on the fiber:

$$
Z \rightarrow Z+1 \Rightarrow \rho^{-1} \rightarrow \rho^{-1}-N
$$

Non-geometric monodromy.
Volume and B-field get mixed

- Monodromies in τ are always geometric. Monodromies in ρ may be non-geometric

Genuine non-geometric backgrounds

Background with $\tau \rightarrow-1 / \tau, \rho \rightarrow-1 / \rho$

$$
\begin{aligned}
\tau(Z) & =\frac{\tau_{0} \cos (f Z)+\sin (f Z)}{\cos (f Z)-\tau_{0} \sin (f Z)} \\
\rho(Z) & =\frac{\rho_{0} \cos (g Z)+\sin (g Z)}{\cos (g Z)-\rho_{0} \sin (g Z)}
\end{aligned}
$$

with $f, g \in \mathbb{Z}+\frac{1}{4}$ and $\rho_{0}, \tau_{0} \in \mathbb{C}$.

- Not T-dual to any known geometric background.
- Fixed point of the transformation at $\tau_{0}=\rho_{0}=i$.
- Studied as an asymmetric \mathbb{Z}_{2} orbifold CFT (C.Condeescu, I. Florakis, D. Lüst. [1202.6366], [1307.0999]).
- Constructed in DFT as a general twisted torus (F. Haßler, D. Lüst. [1401.5068]).
- Potential fixes τ_{0} and ρ_{0} to the fixed point.

Brane solutions

Our aims

- We will deal only with backgrounds that are solution of SUGRA equations of motion (Unlike above).
- Find a method to construct brane backgrounds in semiflat approximation with any given monodromy.

Semiflat approximation: Fibered torus with $U(1)^{2}$ isometries.

- Give an exhaustive classification of such backgrounds using the conjugacy classes of $S L(2, \mathbb{Z})$.
- Discuss the validity of such solutions.

General background solution in semiflat approximation

S. Hellerman, J. McGreevy, B. Williams. [0208174]; J. de Boer, M. Shigemori. [1209.6056]

Ansatz

$$
\begin{aligned}
d s_{10}^{2} & =f^{2}\left(-d X_{0}^{2}+d X_{12345}^{2}\right)+g^{2}(z, \bar{z}) d z d \bar{z}+G_{a b}(z, \bar{z}) d X^{a} d X^{b} \\
H & =H_{i} d X_{i} \wedge d X_{8} \wedge d X_{9} \quad i=6,7 \quad a=8,9
\end{aligned}
$$

Solution

$$
\begin{aligned}
d s_{10}^{2} & =-d X_{0}^{2}+d X_{12345}^{2}+g^{2} d z d \bar{z}+G_{a b} d X^{a} d X^{b} \\
H & =H_{i} d X_{i} \wedge d X_{8} \wedge d X_{9} \quad i=6,7 \quad a=8,9
\end{aligned}
$$

With

$$
\begin{aligned}
g^{2} & =\mathrm{e}^{2 \varphi_{1}} \rho_{2} \tau_{2} \\
G_{a b} & =\frac{\rho_{2}}{\tau_{2}}\left(\begin{array}{cc}
1 & \tau_{1} \\
\tau_{1} & |\tau|^{2}
\end{array}\right) \\
H_{i} & =\partial_{i} \rho_{1}
\end{aligned}
$$

Where $\rho(z)=\rho_{1}+i \rho_{2}, \tau(z)=\tau_{1}+i \tau_{2}$ and $\varphi(z)=\varphi_{1}+i \varphi_{2}$ are holomorphic functions of the complex plane

- We want to find backgrounds with any possible monodromy

$$
M \in S L(2, \mathbb{Z})_{\tau} \times S L(2, \mathbb{Z})_{\rho}: \theta \rightarrow \theta+2 \pi \Rightarrow(\tau, \rho) \rightarrow M[(\tau, \rho)]
$$

- We classify all of them via $\tau(z)$ and $\rho(z)$.

Three possible cases

Non-trivial monodromy in ρ and $\tau=i$
One still have to fix the function $\varphi(z)$. Take $\rho(z)$ with monodromy

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Studying the reduction from 10D to 8D one finds the extra condition:

$$
e^{\varphi} \rightarrow(c \rho+d) e^{\varphi}, \text { when } \theta \rightarrow \theta+2 \pi
$$

Non-trivial monodromy in τ and $\rho=i$

One can study these cases using the symmetry $\tau \leftrightarrow \rho$.

Non-trivial monodromies in τ and ρ

Once one knows the solutions for the above cases, then $\varphi=\varphi^{(\rho)}+\varphi^{(\tau)}$

Constructing new backgrounds with $\tau=i$ and arbitrary monodromy in ρ

The construction procedure

(1) Take a monodromy $e^{m}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z})$. The matrix m always exist since $S L(2, \mathbb{Z})$ is connected.
(2) Construct the matrix $e^{m \frac{\theta}{2 \pi}}=\left(\begin{array}{ll}\tilde{a}(\theta) & \tilde{b}(\theta) \\ \tilde{c}(\theta) & \tilde{d}(\theta)\end{array}\right)$. It is an $\operatorname{SL}(2, \mathbb{Z})$ matrix when $\theta=2 \pi n, n \in \mathbb{Z}$.
(3) Construct the function $\rho(r, \theta)=\frac{\tilde{a}(\theta) \rho_{0}(r)+\tilde{b}(\theta)}{\tilde{c}(\theta) \rho_{0}(r)+\tilde{d}(\theta)}$.
(9) Impose Cauchy-Riemann conditions on $\rho(r, \theta)$ to fix $\rho_{0}(r)$.
(5) Construct the function $e^{\varphi(r, \theta)}=\left(\tilde{c}(\theta) \rho_{0}(r)+\tilde{d}(\theta)\right) e^{\varphi_{0}(r)}$.
(Construct the background.

Classification. The $S L(2, \mathbb{Z})$ conjugacy classes

- Conjugacy class of $a \in S L(2, \mathbb{Z})$: $[a]=\left\{M \mid M=g a g^{-1}, g \in S L(2, \mathbb{Z})\right\}$.
- A useful tool for studying conjugacy classes using the Trace of the matrix. Traces does not change under conjugation. However, two matrices with same trace can be in different conjugacy classes.
There are infinite conjugacy classes. They can be classified into:

Elliptic: $\|\operatorname{Tr} M\|<2$	- Two conjugate complex eigenvalues
	$-M^{n}=\mathbb{I}$, for finite n (finite order)
	$-M$ has fixed points

\& - Infinite order\end{array}\right|\)| Parabolic: $\|\operatorname{Tr} M\|=2$ real eigenvalues | |
| :--- | :--- |
| | - Infinite order |
| - When applying M several times ρ grows | |
| almost exponentially | |

Examples I: Parabolic monodromy in $\rho . \tau=i$

All elements in $\left[\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right]$ can be written like:

$$
M_{p, q}=\left(\begin{array}{cc}
1+p q & p^{2} \\
-q^{2} & 1-p q
\end{array}\right) \quad p, q \in \mathbb{Z}
$$

Function with the desired monodromy:

$$
\rho(r, \theta)=-\frac{\left(p q \frac{\theta}{2 \pi}+1\right) \rho_{0}(r)+p^{2} \frac{\theta}{2 \pi}}{q^{2} \frac{\theta}{2 \pi} \rho_{0}(r)+p q \frac{\theta}{2 \pi}-1}
$$

Imposing Cauchy Riemann conditions: (Define $H_{q}=\frac{q^{2}}{2 \pi}$ and $H_{p}=\frac{p^{2}}{2 \pi}$)

$$
\begin{array}{l|l}
q \neq 0 & q=0 \\
\hline \hline \rho=-\sqrt{\frac{H_{p}}{H_{q}}}-\frac{1}{H_{q} \theta+i\left(1+H_{q} \ln \left(\frac{\mu}{r}\right)\right)} & \rho=H_{p} \theta+i\left(1+H_{p} \ln \left(\frac{\mu}{r}\right)\right)
\end{array}
$$

Background: (Define $h_{p, q}(r)=1+H_{p, q} \ln \left(\frac{\mu}{r}\right)$)

- $q \neq 0$

$$
\begin{aligned}
d s^{2} & =d X_{012345}^{2}+h_{q}(r) d X_{67}^{2}+\frac{h_{q}(r)}{h_{q}^{2}(r)+\left(H_{q} \theta\right)^{2}} d X_{89}^{2} \\
B & =\left(-\sqrt{\frac{H_{p}}{H_{q}}}-\frac{H_{q} \theta}{h_{q}^{2}(r)+\left(H_{q} \theta\right)^{2}}\right) d X_{8} \wedge d X_{9}
\end{aligned}
$$

- $q=0$

$$
\begin{aligned}
d s^{2} & =d X_{012345}^{2}+h_{p}(r) d X_{67}^{2}+h_{p}(r) d X_{89}^{2} \\
B & =H_{p} \theta d X_{8} \wedge d X_{9}
\end{aligned}
$$

- $(p, q)=(1,0) \leftrightarrow$ Smeared NS5
$(p, q)=(0,1) \leftrightarrow Q$-brane (J. de Boer, M. Shigemori. [1209.6056]; F. Haßler, D. Lüst [1303.1413])
- Geometric case: $(p, q)=(1,0),(0,1) \leftrightarrow$ Smeared KK-monopoles.
- Solutions only trustable up to some scale. (Volume becomes negative)

Examples II: Double elliptic case, $\tau \rightarrow-\frac{1}{\tau}, \rho \rightarrow-\frac{1}{\rho}$

Holomorphic function with the desired monodromy:

$$
\begin{aligned}
\rho(r, \theta) & =\frac{\rho_{0}(r) \cos (\theta / 4)+\sin (\theta / 4)}{\cos (\theta / 4)-\rho_{0}(r) \sin (\theta / 4)} \\
\tau(r, \theta) & =\frac{\tau_{0}(r) \cos (\theta / 4)+\sin (\theta / 4)}{\cos (\theta / 4)-\tau_{0}(r) \sin (\theta / 4)} \\
\rho_{0}=\tau_{0} & =-i \operatorname{coth}\left(\frac{1}{4} \ln (r)+C\right)
\end{aligned}
$$

- The background is genuine non-geometrical. Not dual to any known geometric one.
- We were able to reproduce the genuine non-geometric background discussed above for the T^{2} fibration over S^{1}.

Solution on the fiber

$$
\begin{aligned}
& G_{a b}=\left(\begin{array}{cc}
1 & \frac{\sin (\theta / 2)}{\cos (\theta / 2)-\cosh \left(C+\frac{\log (r)}{2}\right)} \\
\frac{\sin (\theta / 2)}{\cos (\theta / 2)-\cosh \left(C+\frac{\log (r)}{2}\right)} & \frac{2 e^{C} \sqrt{r} \cos (\theta / 2)+e^{2 C_{r+1}}}{-2 e^{C} \sqrt{r} \cos (\theta / 2)+e^{2} C_{r+1}}
\end{array}\right) \\
& B_{89}=\frac{\sin (\theta / 2)}{\cos (\theta / 2)-\cosh \left(C+\frac{\log (r)}{2}\right)}
\end{aligned}
$$

Conclusions and open questions

- We investigated exotic branes with arbitrary monodromies.
- We gave an exhaustive classification of all of them.
- We derived explicit solutions for significant examples in each class.
- Picture with a brane source for the flux in contrast with turning on fluxes on a cycle.
- Monodromy becomes "charge" of the brane.
- The group structure of $S L(2, \mathbb{Z})$ suggests that this branes could be understood as bound states of NS5 and Q-brane.
- It is crucial to better understand the microscopic description of Q-branes in string theory.

THANK YOU

The smeared NS5 and its duals

The NS5 solution of supergravity equations in 10D

$$
\begin{aligned}
d s_{N S 5}^{2} & =d X_{012345}^{2}+h\left(r_{\perp}\right) d X_{6789}^{2} \\
\mathrm{e}^{2 \phi} & =h\left(r_{\perp}\right) \\
H_{m n p} & =\epsilon_{m n p q} \partial_{q} h\left(r_{\perp}\right), \quad m, n, p, q \in\{6,7,8,9\}
\end{aligned}
$$

r_{\perp} transversal radial direction $(6,7,8,9)$.

$$
h\left(r_{\perp}\right)=1+\frac{H}{r_{\perp}^{2}}, \quad H \text { constant }
$$

This is a well defined object in string theory so it's a good starting point.

NS5 in semi-flat approximation

The smeared NS5

Compactify directions 8 and 9 and take the limit $r \gg R_{8}, R_{9}$:

$$
\begin{aligned}
d s_{N S 5}^{2}= & d X_{012345}^{2} \\
& +h(r) d X_{67}^{2}+h(r) d X_{89}^{2} \\
\mathrm{e}^{2 \phi}= & h(r) \\
B= & H \theta d X_{8} \wedge d X_{9}
\end{aligned}
$$

With,

$$
h(r)=1+H \ln \frac{\mu}{r}
$$

Quantization condition: $2 \pi H \in \mathbb{Z}$
Fibered torus with $U(1)^{2}$ isometries.

Monodromy on the fiber:
When $\theta \rightarrow \theta+2 \pi \Rightarrow \rho \rightarrow \rho+N$

T-duality chain: Smeared NS5 $\xrightarrow{X^{9}}$ Smeared KK-monopole $\xrightarrow{X^{8}} \mathrm{Q}$ brane

The KK monopole

$$
\begin{aligned}
d s_{K K}^{2} & =d X_{012345}^{2}+h(r) d X_{67}^{2}+\frac{1}{h(r)}\left(d X_{9}+H \theta d X_{8}\right)^{2}+h(r) d X_{8}^{2} \\
\mathrm{e}^{2 \phi} & =1 \\
H & =0
\end{aligned}
$$

The Q brane

J. de Boer, M. Shigemori. [1209.6056]; F. Haßler, D. Lüst [1303.1413]

$$
\begin{aligned}
d s_{Q}^{2} & =d X_{012345}^{2}+h(r) d X_{67}^{2}+\frac{h(r)}{h^{2}(r)+(H \theta)^{2}} d X_{89}^{2} \\
\mathrm{e}^{2 \phi} & =\frac{h(r)}{h^{2}(r)+(H \theta)^{2}} \\
B & =-\frac{H \theta}{h^{2}(r)+(H \theta)^{2}} d X_{8} \wedge d X_{9},
\end{aligned}
$$

