

ATLAS muon performance in first LHC run 2 data

Nicolas Köhler

Max-Planck-Institute for Physics (Werner-Heisenberg-Institut)

July 7th, 2015

Results

Summary & Outlook

ATLAS run 2 started right now

- LHC run 2 started on June 3rd, 2015
- ~ 20 hours of stable beams
- ~ 70 Mio. events recorded
- In total, 12.45pb⁻¹ of ATLAS data recorded in 2015

http://run2-13tev.web.cern.ch

https://acc-stats.web.cern.ch/acc-stats/

Results

Summary & Outlook

Muon reconstruction at the ATLAS experiment

 \rightarrow Muon leaves curved track in the Inner Detector, small energy deposit in the calorimeters and curved track in the Muon Spectrometer

Results

Summary & Outlook

Muon reconstruction at the ATLAS detector

- Combined muons (combine Inner Detector (ID) and Muon Spectrometer (MS) measurements)
- ightarrow Standard method used in ATLAS
 - Standalone muons: MS only (at high η, near to the beam axis)
 - Calo-Tagged muons: ID tracks with additional small energy deposits in the calorimeter (at $\eta \approx 0$)
 - Segment-Tagged muons: ID tracks combined with single segments of the MS (at low energies)

Summary & Outlook

Motivation: How well does the reconstruction work?

- All cross section measurements of processes with muons in the final state require the knowledge of the muon reconstruction efficiency
- ightarrow Precise knowledge of the muon efficiency especially important for multi-lepton final states (e.g. $H \rightarrow 4\mu$, where $N_{\rm events} \sim \epsilon^4$)

Summary & Outlook

How to measure the muon reconstruction efficiency?

Example - Reconstruction efficiency for muons in the MS:

 Use dimuon resonances where one muon is called *Tag*, the other one *Probe*

→ MS efficiency is the probability that a *Probe* track measured in the ID is also reconstructed as a muon by the MS

CERN-OPEN-2008-020

Select Z-decay by requiring $81 < m_{\ell\ell} < 101 \, {\rm GeV} \ {\rm and} \ \Delta \phi_{\ell\ell} > 2$

Introduction

Results

Summary & Outlook

First public ATLAS run 2 results

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/MUON-2015-001/

 \rightarrow Use dimuon events, i.e. $Z \rightarrow \mu \mu$ (cleaner signature) for Tag&Probe analysis

Results

Tag&Probe pairs after $Z ightarrow \mu \mu$ selection

 $\sim 4400\,{\rm Tag}{\rm \& Probe \ pairs \ selected} \rightarrow {\rm Large \ signal \ to \ background \ ratio}$

Data-driven QCD background estimate with same-charge muon events, irreducible backgrounds ($t\bar{t}, Z \rightarrow \tau \tau$) are taken from MC simulation

Introduction	Tag&Probe analysis	Results	Summary & Outlook	
		00		
				14643775

Muon reconstruction efficiency results from $Z
ightarrow \mu \mu$ decays

 \rightarrow Percent-level precision with only 6.5pb^{-1} of data

Providing reconstruction efficiencies to physics analyses

- MC samples get corrected using ratio between efficiency in data and MC simulation to correct for deviations from the real detector behaviour
- → Providing run 2 data-based efficiencies is crucial prerequisit for all real physics analyses with lepton final states
- \rightarrow Already high statistical accuracy

Summary

- First ATLAS run 2 measurements
- Already very precise muon efficiency determination from the first 6.5pb⁻¹ of run 2 data
- ightarrow In agreement with ATLAS run 1 results

troduction	Tag&Probe analysis	Results	Summary & Outlook	
			000	

Outlook - Near-term plans for run 2

July

August

• 50 ns bunch-crossing rate

- Detector performance
- SM cross-section measurements: W, Z, J/ψ

- 25 ns bunch-crossing rate
- Black holes ≤ 5 TeV (ATL-PHYS-PUB-2009-074)
- SM cross-section measurements: tt

September

- $~~\sim 3-5 {\rm fb}^{-1}$
- SUSY strong production: $\sim 3\sigma$ discovery potential:
 - $m_{\tilde{g}} \leq 1.5 \,\mathrm{TeV},$
 - $m_{\tilde{b}} \leq 730 \, \text{GeV},$

$m_{ ilde{t}} \leq 900 \, { m GeV}$

ATL-PHYS-PUB-2015-005

- RPV SUSY $\rightarrow 4\ell$ (run 1 results: Phys. Rev. D 90)
- Z' with $m_{Z'} \leq 3 \text{ TeV}$

Inti OC	oduction Tag&Probe a	analysis Results OO	Summary & Outlook ○○● -	Ap Ay as
	Outlook - Longer-	term plans for run 2		
	October	January '16	April '16	
	Higgs $\rightarrow ZZ^*$ rediscovery	 Higgs properties (CP) & couplings 	 Significant increase in integrated luminosity <i>ttH</i> <i>H</i> → <i>bb</i> 	
	2017		2018	
	SUSY electroweak production SUSY displaced vertices (run ⁻ arXiv:1504.05162) Generic Dark matter	1 results:	• $\sim 300 \text{fb}^{-1}$ • $HZ \rightarrow Z + \text{invisible}$ (arXiv:1309.7925) • High-statistics analyses	

Backup: $Z \rightarrow \mu \mu$ event selection

Tag muon:

- Has to fullfill the event trigger requirements
- Has to be a well reconstructed muon (isolated and $p_{\rm T} > 28\,{\rm GeV}$) Probe muon:
- $p_{\mathrm{T}} > 10 \, \mathrm{GeV}$
- Has to fullfill the requirements for the respective muon type for which the efficiency shall be computed

Tag&Probe-pair:

- $81 \, \text{GeV} < m_{\rm H} < 101 \, \text{GeV}$
- $\Delta \phi_{\rm H} > 2$

How to measure the muon reconstruction efficiency?

CERN-OPEN-2008-020

Example:

- Efficiency to reconstruct a muon of the type μ_{type} : $\epsilon(\mu_{type}) = \epsilon(\mu_{type}|ID) \cdot \epsilon(ID)$ $\approx \epsilon(\mu_{type}|ID) \cdot \epsilon(ID|MS)$
- Idea: In order to measure $\epsilon(\mu_{type}|ID),$ ID tracks are used as probes and matched to muons of the type μ_{type}

$$ightarrow$$
 Efficiency $\epsilon = rac{N_{ ext{matched}}}{N_{ ext{trials}}}$