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mathematica math

Frontend Darvrerene Kernel

(GUI) MathLink (Computation)
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- No obvious relation

between screen and © Interactive and
definitions non-interactive
~ Always interactive © Scriptable
~ Slow startup © Fast startup )
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But: don’t overdo it.
If your calculation takes 5 min in total, don’t waste time
improving.
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Do[ sum += tab[[i]], {i, Length[tabl} ];

sum |
test2 :=|Apply[Plus, tab] .
Here are the timings: -
Timing[test1] [[1]] [0 8.29 Second -
Timing[test2] [[1]] [0 1.75 Second O
H
H
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AppendTo[res, tab[[i]]]

Do [ ées = {res, tab[[i]]i, {i, Length[tabl} ];
Flatten[res] ]

The timings: :
Timing[test1] [[1]] O 19.47 Second

Timing[test2] [[1]] O 0.11 Second -

O

n

n
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test1 has to re-write the list every time an element is added:
{+ {1} {1,2} {1,2,3}

test2 does that only once at the end with Flatten:

¢

f I 1 I_I_I
{3 {31y {3,132 {{{{},1},2},3} ...
T T ' | S |
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O

Springer, 2004-2006.
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)

ParallelMap[myfunc, data];

Parallel Kernels count toward Sublicenses.
# Sublicenses = 8 x # interactive Licenses.

MPP: 35 interactive licenses (5k< each), 288 sublicenses.

T. Hahn, Getting most out of Mathematica — p.12




DistributeDefinitions DistributeContexts

Automatic parallelization (so-so success):
Parallelize [expr]

‘Intrinsic’ functions (e.g. Simplify) not parallelizable.

Multithreaded computation partially automatic (OMP) for
some numerical functions, e.g. Eigensystemn.

Take care of side-effects of functions.

Usual concurrency stuff (write to same file, etc).
. B BN BN
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<< FeynArts
<< FormCalc
top = CreateTopologies[...];

EOF_ . ... ... .. . end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.
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#! /bin/sh
math -run "argl=$1" -run "arg2=$2" ... << \END

END

e Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x
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outside mathematica!



e Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

e Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x72 + Sin[x"2]];
Export["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

e FormCalc’s code-generation functions produce optimized
standalone code. EEEE
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opens file.F as a Fortran file for writing,

o WriteExpr[handle, {var -> expr, .. .}]
writes out Fortran code which calculates expr and stores
the result in var,

e Close[handle]
closes the file again.
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var = par
var = var + part?2

e High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

e Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand:

VarDecl, ToDoLoops, IndexIf, FileSplit, ...
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ode structured by e.g.

e Loops and tests handled through macros, e.g.
LOOP(var, 1,10,1) ... ENDLOOP(var)

e Sectioning by comments, to aid automated substitution
e.g. with sed, e.g. * BEGIN VARDECL ... * END VARDECL :

¢ Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.
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:ReturnType: Real
:End:

#include "mathlink.h"

double copysign(double x, double s) {
return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char *xargv) {
return MLMain(argc, argv);

}
For more details see arXiv:1107.4379.
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