
Getting most out of Mathematica

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, Getting most out of Mathematica – p.1

Mathematica Components

“Mathematica”

mathematica

Frontend
(GUI)

math

Kernel
(Computation)

MathLink

T. Hahn, Getting most out of Mathematica – p.2

Why I hate the Frontend

FRONTEND:

© Nice formatting

© Documentation

© Ease of use

§ No obvious relation
between screen and
definitions

§ Always interactive

§ Slow startup

KERNEL:

§ Text interface

§ No pretty-printing

© 1-to-1 relation to
definitions

© Interactive and
non-interactive

© Scriptable

© Fast startup

T. Hahn, Getting most out of Mathematica – p.3

Plan

• Program smart!

• Parallelize!

• Script! Distribute! Automate!

• Crunch numbers outside Mathematica!

But: don’t overdo it.
If your calculation takes 5 min in total, don’t waste time
improving.

T. Hahn, Getting most out of Mathematica – p.4

Program smart!

T. Hahn, Getting most out of Mathematica – p.5

List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:

tab = Table[Random[], {10^7}];

test1 := Block[{sum = 0},

Do[sum += tab[[i]], {i, Length[tab]}];

sum]

test2 := Apply[Plus, tab]

Here are the timings:

Timing[test1][[1]] ☞ 8.29 Second

Timing[test2][[1]] ☞ 1.75 Second

T. Hahn, Getting most out of Mathematica – p.6

More Speed Bumps

Consider:

tab = Table[Random[], {10^5}];

test1 := Block[{res = {}},

Do[AppendTo[res, tab[[i]]], {i, Length[tab]}];

res]

test2 := Block[{res = {}},

Do[res = {res, tab[[i]]}, {i, Length[tab]}];

Flatten[res]]

The timings:
Timing[test1][[1]] ☞ 19.47 Second

Timing[test2][[1]] ☞ 0.11 Second

T. Hahn, Getting most out of Mathematica – p.7

Reference Count

Assignments that don’t change the content make no copy but
just increase the Reference Count.

a = x a x
1

b = a

a

b

x
2

++b

a

b

x
1

x + 1
1

T. Hahn, Getting most out of Mathematica – p.8

Reference Count and Speed

test1 := ...

... AppendTo[res, tab[[i]]] ...

res

test2 :=

... res = {res, tab[[i]]} ...

Flatten[res]

test1 has to re-write the list every time an element is added:

{} {1} {1,2} {1,2,3} ...

test2 does that only once at the end with Flatten:

{} {{},1} {{{},1},2} {{{{},1},2},3} ...

T. Hahn, Getting most out of Mathematica – p.9

More Programming Wisdom

• Michael Trott
The Mathematica Guidebook
for { Programming, Graphics,
Numerics, Symbolics } (4 vol)
Springer, 2004–2006.

T. Hahn, Getting most out of Mathematica – p.10

Parallelize!

T. Hahn, Getting most out of Mathematica – p.11

Parallel Kernels

Mathematica has built-in support for parallel Kernels:

LaunchKernels[];

ParallelNeeds["mypackage‘"];

data = << mydata;

ParallelMap[myfunc, data];

Parallel Kernels count toward Sublicenses.
Sublicenses = 8 × # interactive Licenses.

MPP: 35 interactive licenses (5ke each), 288 sublicenses.

T. Hahn, Getting most out of Mathematica – p.12

Parallel Functions

• More functions:

ParallelArray ParallelEvaluate ParallelNeeds

ParallelSum ParallelCombine ParallelTable

ParallelDo ParallelProduct ParallelTry

ParallelMap ParallelSubmit

DistributeDefinitions DistributeContexts

• Automatic parallelization (so-so success):
Parallelize[expr]

• ‘Intrinsic’ functions (e.g. Simplify) not parallelizable.

• Multithreaded computation partially automatic (OMP) for
some numerical functions, e.g. Eigensystem.

• Take care of side-effects of functions.

• Usual concurrency stuff (write to same file, etc).

T. Hahn, Getting most out of Mathematica – p.13

Script! Distribute! Automate!

T. Hahn, Getting most out of Mathematica – p.14

Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh’s Here documents:

#! /bin/sh Shell Magic

math << _EOF_ start Here document (note the \)

<< FeynArts‘

<< FormCalc‘

top = CreateTopologies[...];

...

EOF end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, Getting most out of Mathematica – p.15

Scripting Mathematica

• Everything contained in one compact shell script, even if
it involves several Mathematica sessions.

• Can combine with arbitrary shell programming, e.g. can
use command-line arguments efficiently:

#! /bin/sh

math -run "arg1=$1" -run "arg2=$2" ... << \END

...

END

• Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, Getting most out of Mathematica – p.16

Crunch numbers
outside Mathematica!

T. Hahn, Getting most out of Mathematica – p.17

Code generation

• Conversion of Mathematica expression to Fortran/C
painless.

• Optimized output can easily run faster than in
Mathematica.

• Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

• Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x^2 + Sin[x^2]];

Export["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

• FormCalc’s code-generation functions produce optimized
standalone code.

T. Hahn, Getting most out of Mathematica – p.18

Code-generation Functions

FormCalc’s code-generation functions are public and
disentangled from the rest of the code. They can be used to
write out an arbitrary Mathematica expression as optimized
Fortran or C code:

• handle = OpenCode["file.F"]
opens file.F as a Fortran file for writing,

• WriteExpr[handle, {var -> expr, . . .}]

writes out Fortran code which calculates expr and stores
the result in var,

• Close[handle]
closes the file again.

T. Hahn, Getting most out of Mathematica – p.19

Code generation

Traditionally: Output in Fortran.
Code generator is meanwhile rather sophisticated, e.g.

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand:
VarDecl, ToDoLoops, IndexIf, FileSplit, . . .

T. Hahn, Getting most out of Mathematica – p.20

C Output

• Output in C99 makes integration into C/C++ codes
easier:

SetLanguage["C"]

Code structured by e.g.

• Loops and tests handled through macros, e.g.
LOOP(var, 1, 10, 1) . . . ENDLOOP(var)

• Sectioning by comments, to aid automated substitution
e.g. with sed, e.g. ∗ BEGIN VARDECL . . . ∗ END VARDECL

• Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.

T. Hahn, Getting most out of Mathematica – p.21

MathLink

The MathLink API connects Mathematica with external C/C++
programs (and vice versa). J/Link does the same for Java.

:Begin:

:Function: copysign

:Pattern: CopySign[x_?NumberQ, s_?NumberQ]

:Arguments: {N[x], N[s]}

:ArgumentTypes: {Real, Real}

:ReturnType: Real

:End:

#include "mathlink.h"

double copysign(double x, double s) {

return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

For more details see arXiv:1107.4379.

T. Hahn, Getting most out of Mathematica – p.22

	Mathematica Components
	Why I hate the Frontend
	Plan
	
	List-oriented Programming
	More Speed Bumps
	Reference Count
	Reference Count and Speed
	More Programming Wisdom
	
	Parallel Kernels
	Parallel Functions
	
	Scripting Mathematica
	Scripting Mathematica
	
	Code generation
	Code-generation Functions
	Code generation
	C Output
	MathLink

