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Why I hate the Frontend

FRONTEND:

© Nice formatting

© Documentation

© Ease of use

§ No obvious relation
between screen and
definitions

§ Always interactive

§ Slow startup

KERNEL:

§ Text interface

§ No pretty-printing

© 1-to-1 relation to
definitions

© Interactive and
non-interactive

© Scriptable

© Fast startup
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Plan

• Program smart!

• Parallelize!

• Script! Distribute! Automate!

• Crunch numbers outside Mathematica!

But: don’t overdo it.
If your calculation takes 5 min in total, don’t waste time
improving.
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Program smart!
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List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:

tab = Table[Random[], {10^7}];

test1 := Block[ {sum = 0},

Do[ sum += tab[[i]], {i, Length[tab]} ];

sum ]

test2 := Apply[Plus, tab]

Here are the timings:

Timing[test1][[1]] ☞ 8.29 Second

Timing[test2][[1]] ☞ 1.75 Second
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More Speed Bumps

Consider:

tab = Table[Random[], {10^5}];

test1 := Block[ {res = {}},

Do[ AppendTo[res, tab[[i]]], {i, Length[tab]} ];

res ]

test2 := Block[ {res = {}},

Do[ res = {res, tab[[i]]}, {i, Length[tab]} ];

Flatten[res] ]

The timings:
Timing[test1][[1]] ☞ 19.47 Second

Timing[test2][[1]] ☞ 0.11 Second
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Reference Count

Assignments that don’t change the content make no copy but
just increase the Reference Count.
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Reference Count and Speed

test1 := ...

... AppendTo[res, tab[[i]]] ...

res

test2 :=

... res = {res, tab[[i]]} ...

Flatten[res]

test1 has to re-write the list every time an element is added:

{} {1} {1,2} {1,2,3} ...

test2 does that only once at the end with Flatten:

{} {{},1} {{{},1},2} {{{{},1},2},3} ...
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More Programming Wisdom

• Michael Trott
The Mathematica Guidebook
for { Programming, Graphics,
Numerics, Symbolics } (4 vol)
Springer, 2004–2006.
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Parallelize!

T. Hahn, Getting most out of Mathematica – p.11



Parallel Kernels

Mathematica has built-in support for parallel Kernels:

LaunchKernels[];

ParallelNeeds["mypackage‘"];

data = << mydata;

ParallelMap[myfunc, data];

Parallel Kernels count toward Sublicenses.
# Sublicenses = 8 × # interactive Licenses.

MPP: 35 interactive licenses (5ke each), 288 sublicenses.
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Parallel Functions

• More functions:

ParallelArray ParallelEvaluate ParallelNeeds

ParallelSum ParallelCombine ParallelTable

ParallelDo ParallelProduct ParallelTry

ParallelMap ParallelSubmit

DistributeDefinitions DistributeContexts

• Automatic parallelization (so-so success):
Parallelize[expr]

• ‘Intrinsic’ functions (e.g. Simplify) not parallelizable.

• Multithreaded computation partially automatic (OMP) for
some numerical functions, e.g. Eigensystem.

• Take care of side-effects of functions.

• Usual concurrency stuff (write to same file, etc).
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Script! Distribute! Automate!
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Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh’s Here documents:

#! /bin/sh ................ Shell Magic

math << \_EOF_ ............ start Here document (note the \)

<< FeynArts‘

<< FormCalc‘

top = CreateTopologies[...];

...

_EOF_ ..................... end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.
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Scripting Mathematica

• Everything contained in one compact shell script, even if
it involves several Mathematica sessions.

• Can combine with arbitrary shell programming, e.g. can
use command-line arguments efficiently:

#! /bin/sh

math -run "arg1=$1" -run "arg2=$2" ... << \END

...

END

• Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x
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Crunch numbers
outside Mathematica!
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Code generation

• Conversion of Mathematica expression to Fortran/C
painless.

• Optimized output can easily run faster than in
Mathematica.

• Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

• Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x^2 + Sin[x^2]];

Export["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

• FormCalc’s code-generation functions produce optimized
standalone code.
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Code-generation Functions

FormCalc’s code-generation functions are public and
disentangled from the rest of the code. They can be used to
write out an arbitrary Mathematica expression as optimized
Fortran or C code:

• handle = OpenCode["file.F"]
opens file.F as a Fortran file for writing,

• WriteExpr[handle, {var -> expr, . . .}]

writes out Fortran code which calculates expr and stores
the result in var,

• Close[handle]
closes the file again.
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Code generation

Traditionally: Output in Fortran.
Code generator is meanwhile rather sophisticated, e.g.

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand:
VarDecl, ToDoLoops, IndexIf, FileSplit, . . .
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C Output

• Output in C99 makes integration into C/C++ codes
easier:

SetLanguage["C"]

Code structured by e.g.

• Loops and tests handled through macros, e.g.
LOOP(var, 1, 10, 1) . . . ENDLOOP(var)

• Sectioning by comments, to aid automated substitution
e.g. with sed, e.g. ∗ BEGIN VARDECL . . . ∗ END VARDECL

• Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.

T. Hahn, Getting most out of Mathematica – p.21



MathLink

The MathLink API connects Mathematica with external C/C++
programs (and vice versa). J/Link does the same for Java.

:Begin:

:Function: copysign

:Pattern: CopySign[x_?NumberQ, s_?NumberQ]

:Arguments: {N[x], N[s]}

:ArgumentTypes: {Real, Real}

:ReturnType: Real

:End:

#include "mathlink.h"

double copysign(double x, double s) {

return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

For more details see arXiv:1107.4379.
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