Miinchen

T. Hahn, Getting most out of Mathematica —p.1

mathematica math

Frontend Darvrerene Kernel

(GUI) MathLink (Computation)

T. Hahn, Getting most out of Mathematica — p.2

- No obvious relation

between screen and © Interactive and
definitions non-interactive
~ Always interactive © Scriptable
~ Slow startup © Fast startup)

T. Hahn, Getting most out of Mathematica —p.3

But: don’t overdo it.
If your calculation takes 5 min in total, don’t waste time
improving.

T. Hahn, Getting most out of Mathematica —p.4

T. Hahn, Getting most out of Mathematica —p.5

Do[sum += tab[[i]], {i, Length[tabl}];

sum |
test2 :=|Apply[Plus, tab] .
Here are the timings: -
Timing[test1] [[1]] [0 8.29 Second -
Timing[test2] [[1]] [0 1.75 Second O
H
H

T. Hahn, Getting most out of Mathematica —p.6

AppendTo[res, tab[[i]]]

Do [ées = {res, tab[[i]]i, {i, Length[tabl}];
Flatten[res]]

The timings: :
Timing[test1] [[1]] O 19.47 Second

Timing[test2] [[1]] O 0.11 Second -

O

n

n

T. Hahn, Getting most out of Mathematica —p.7

T. Hahn, Getting most out of Mathematica — p.8

test1 has to re-write the list every time an element is added:
{+ {1} {1,2} {1,2,3}

test2 does that only once at the end with Flatten:

¢

f I 1 I_I_I
{3 {31y {3,132 {{{{},1},2},3} ...
T T ' | S |

T. Hahn, Getting most out of Mathematica —p.9

O

Springer, 2004-2006.

T. Hahn, Getting most out of Mathematica —p.10

T. Hahn, Getting most out of Mathematica — p.11

)

ParallelMap[myfunc, data];

Parallel Kernels count toward Sublicenses.
Sublicenses = 8 x # interactive Licenses.

MPP: 35 interactive licenses (5k< each), 288 sublicenses.

T. Hahn, Getting most out of Mathematica — p.12

DistributeDefinitions DistributeContexts

Automatic parallelization (so-so success):
Parallelize [expr]

‘Intrinsic’ functions (e.g. Simplify) not parallelizable.

Multithreaded computation partially automatic (OMP) for
some numerical functions, e.g. Eigensystemn.

Take care of side-effects of functions.

Usual concurrency stuff (write to same file, etc).
. B BN BN

T. Hahn, Getting most out of Mathematica —p.13

T. Hahn, Getting most out of Mathematica — p.14

<< FeynArts
<< FormCalc
top = CreateTopologies[...];

EOF_ end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, Getting most out of Mathematica —p.15

#! /bin/sh
math -run "argl=$1" -run "arg2=$2" ... << \END

END

e Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, Getting most out of Mathematica —p.16

outside mathematica!

e Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

e Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x72 + Sin[x"2]];
Export["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

e FormCalc’s code-generation functions produce optimized
standalone code. EEEE

T. Hahn, Getting most out of Mathematica —p.18

opens file.F as a Fortran file for writing,

o WriteExpr[handle, {var -> expr, .. .}]
writes out Fortran code which calculates expr and stores
the result in var,

e Close[handle]
closes the file again.

T. Hahn, Getting most out of Mathematica — p.19

var = par
var = var + part?2

e High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

e Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand:

VarDecl, ToDoLoops, IndexIf, FileSplit, ...

T. Hahn, Getting most out of Mathematica —p.20

ode structured by e.g.

e Loops and tests handled through macros, e.g.
LOOP(var, 1,10,1) ... ENDLOOP(var)

e Sectioning by comments, to aid automated substitution
e.g. with sed, e.g. * BEGIN VARDECL ... * END VARDECL :

¢ Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.

T. Hahn, Getting most out of Mathematica — p.21

:ReturnType: Real
:End:

#include "mathlink.h"

double copysign(double x, double s) {
return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char *xargv) {
return MLMain(argc, argv);

}
For more details see arXiv:1107.4379.

T. Hahn, Getting most out of Mathematica — p.22

	Mathematica Components
	Why I hate the Frontend
	Plan
	
	List-oriented Programming
	More Speed Bumps
	Reference Count
	Reference Count and Speed
	More Programming Wisdom
	
	Parallel Kernels
	Parallel Functions
	
	Scripting Mathematica
	Scripting Mathematica
	
	Code generation
	Code-generation Functions
	Code generation
	C Output
	MathLink

