Status of the CRESST Dark Matter Search

Anja Tanzke

Max-Planck-Institute for Physics

YSW Ringberg 2015, 7.7.2015

Non-scintillating surfaces on reflective bronze holding clamps!

210
Po $ightarrow$ 206 Pb(103 keV) + $lpha$ (5.3 MeV)

Decay inside clamp material

- Decay inside clamp material
- 2 Decay on or slightly below surface of clamp
 - (a) α hitting clamp \rightarrow no scintlillation light

- Decay inside clamp material
- 2 Decay on or slightly below surface of clamp
 - (a) α hitting clamp \rightarrow no scintlillation light
 - (b) α hitting scintillating material \rightarrow additional scintillation light (with different pulse shape)

CRESST-II Phase 2

- Data-taking since July 2013
- 18 detector modules (5 kg target mass)
- Upgraded Detector Modules: 3 new detector designs
- Focus on one detector module TUM40
 - 29 kg days of data
 - nonblinded data set from August 2013 to December 2013

TUM40

conventional module

crystal held by non-scintillating reflective bronze clamps

TUM40

crystal held by CaWO₄ sticks pressed by clamps outside the reflective housing \rightarrow fully-scintillating housing

Veto of Surface Events

Veto of Surface Events

TUM40: Radiopurity

- CaWO₄ crystal production at TUM
- improvement of e^-/γ background below 50 keV by a factor of 2-10
- TUM40: average rate 3.44/(kg keV day)

- γ-lines caused by cosmogenic activation
- $\bullet\,$ Energy resolution $\sigma\,{\sim}100\,{\rm eV}$
- all lines agree within <5 eV to tabulated values

A. Tanzke (MPP)

TUM40: Trigger Threshold

extremely low trigger threshold of $E_{th} \sim 603 \, eV$

- Fully-efficient veto of surface backgrounds
- Unprecedented radiopurity
- Very low trigger threshold of ${\sim}600\,\text{eV}$
- Excellent resolution of ${\sim}100\,{
 m eV}$
- \rightarrow Low-threshold Dark Matter analysis

Low Threshold Analysis - Motivation

TUM40: Acceptance Region

- WIMP-Acceptance region:
 - $\bullet ~600\,eV < E < 40\,keV$
 - LY < 50% O-band
- all events are considered as WIMP scatters

WIMP-Landscape Summer 2014

Results from 29 kg days of TUM40

- M2 completely ruled out
- New parameter space explored for WIMP masses below 3 GeV/c²

Data vs. Simulation

- M2 completely ruled out
- New parameter space explored for WIMP masses below $3 \, \text{GeV}/\text{c}^2$
- Events in acceptance region can be explained with ${\rm e^-}/\gamma$ background only

A. Tanzke (MPP)

Status of CRESST

13 / 20

Goal for CRESST II Phase 2

- 500 kg days reached end of May
- threshold of several detectors lowered $<400 \text{ eV} \rightarrow \text{further}$ improvement in low mass WIMP region possible

Analysis strategy:

- use non-blinded data set (115 live days) for definition of data quality cuts, trigger efficiencies and selection of detectors
- Apply to blinded data set (since January 2014)

Future Strategy for CRESST III

CRESST proved high potential for low-mass WIMP search

ightarrow Increase Performance of detectors

Status of CRESST

Increase performance of detectors with small crystals $(m{\sim}24\,g)$ with at least TUM40 quality

phonon detector threshold $\sim 400\,\text{eV}$

light detector resolution $\sim 5\,\text{eV}$

improvement by factor of 5

improvement by factor of 2

CRESST III: Detector modules for low-mass WIMP search

- Prototype successfully tested (threshold of 100 eV reached)
- Production of detector modules ongoing

CRESST III will start end of this year

Projection for CRESST III Phase 1

CRESST III Phase 1

50 kg days: 10 small crystals (m=24 g) operated for 1 year

A. Tanzke (MPP)

Status of CRESST

YSW Ringberg 2015 18 / 20

Projection for CRESST III Phase 2

CRESST III Phase 2

- 1 tonne days: 100 modules, 2 years
- crystal radiopurity improved by a factor of 100

A. Tanzke (MPP)

Status of CRESST

CRESST II Phase 2

- CRESST technology proved high potetial for low-mass WIMP search
- \bullet CRESST II Phase 2 probed new region of parameter space below $3\,\text{GeV}/\text{c}^2$

CRESST III

- Potential to explore low-mass WIMP region
- Starting end of 2015

Backup Slides

Crystal Growth via Czochralski Method

 $\bullet~$ Production of CaWO_4 powder via solid state reaction: CaCO_3 + WO_3 \rightarrow CaWO_4 + CO_2

- Melting of CaWO₄ powder in Rh crucible of Czochralski furnace
- Lowering of seed crystal into CaWO₄ melt
- Drawing in z direction under rotation
 ⇒ Formation of a cylindrically shaped crystal with crystallographic orientation of seed crystal

Radon decay chain

Multi-Element Target CaWO₄

A. Tanzke (MPP)

TUM40: Cut Efficiency

