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Break on the spectrum

Bottom-up approach

The pp collisions of CRs in the ISM collisions produce the
observed diffused high energy ν flux

We assume that the CRs are accelerated by stellar remnants

We consider two types of stellar remnants:
Supernova remnants (SNRs)

Stars with M > 8M�
CR difusse shock acceleration mechnism
Capable of generating ν flux up to 100−150 TeV

Hypernova remmants (HNRs)

Small fraction of SNRs (1w %) with extreme energetic ejecta
Stars with M > (50 − 80)M�, low metallicity (population II)
Capable of generating ν flux up to 1−10 PeV

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 10 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

Bottom-up approach

The pp collisions of CRs in the ISM collisions produce the
observed diffused high energy ν flux

We assume that the CRs are accelerated by stellar remnants

We consider two types of stellar remnants:
Supernova remnants (SNRs)

Stars with M > 8M�
CR difusse shock acceleration mechnism
Capable of generating ν flux up to 100−150 TeV

Hypernova remmants (HNRs)

Small fraction of SNRs (1w %) with extreme energetic ejecta
Stars with M > (50 − 80)M�, low metallicity (population II)
Capable of generating ν flux up to 1−10 PeV

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 10 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

Bottom-up approach

The pp collisions of CRs in the ISM collisions produce the
observed diffused high energy ν flux

We assume that the CRs are accelerated by stellar remnants

We consider two types of stellar remnants:

Supernova remnants (SNRs)

Stars with M > 8M�
CR difusse shock acceleration mechnism
Capable of generating ν flux up to 100−150 TeV

Hypernova remmants (HNRs)

Small fraction of SNRs (1w %) with extreme energetic ejecta
Stars with M > (50 − 80)M�, low metallicity (population II)
Capable of generating ν flux up to 1−10 PeV

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 10 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

Bottom-up approach

The pp collisions of CRs in the ISM collisions produce the
observed diffused high energy ν flux

We assume that the CRs are accelerated by stellar remnants

We consider two types of stellar remnants:
Supernova remnants (SNRs)

Stars with M > 8M�
CR difusse shock acceleration mechnism
Capable of generating ν flux up to 100−150 TeV

Hypernova remmants (HNRs)

Small fraction of SNRs (1w %) with extreme energetic ejecta
Stars with M > (50 − 80)M�, low metallicity (population II)
Capable of generating ν flux up to 1−10 PeV

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 10 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

Bottom-up approach

The pp collisions of CRs in the ISM collisions produce the
observed diffused high energy ν flux

We assume that the CRs are accelerated by stellar remnants

We consider two types of stellar remnants:
Supernova remnants (SNRs)

Stars with M > 8M�
CR difusse shock acceleration mechnism
Capable of generating ν flux up to 100−150 TeV

Hypernova remmants (HNRs)

Small fraction of SNRs (1w %) with extreme energetic ejecta
Stars with M > (50 − 80)M�, low metallicity (population II)
Capable of generating ν flux up to 1−10 PeV

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 10 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

Bottom-up approach

The pp collisions of CRs in the ISM collisions produce the
observed diffused high energy ν flux

We assume that the CRs are accelerated by stellar remnants

We consider two types of stellar remnants:
Supernova remnants (SNRs)

Stars with M > 8M�
CR difusse shock acceleration mechnism
Capable of generating ν flux up to 100−150 TeV

Hypernova remmants (HNRs)

Small fraction of SNRs (1w %) with extreme energetic ejecta
Stars with M > (50 − 80)M�, low metallicity (population II)
Capable of generating ν flux up to 1−10 PeV

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 10 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

NSFGs vs SFGs

The galactic environment surrounding the stellar remnant
plays a crucial role for the ν production.

In our calculation we have considered two type of galaxies:

1 Normal star formation Galaxies (NSFGs)

Galaxies with a star formation rate (SFR) similar to the Milky
Way
Low np(n = 10cm3) → low efficiency for ν production

2 Star burst galaxies (SBGs)

Old, Metal poor galaxies (zw1-2)
Galaxies with a high SFR
Relative rate of SBGs → (10-20)% of the NSFGs
High np(n = 102cm3) → high efficiency for ν production

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 11 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

NSFGs vs SFGs

The galactic environment surrounding the stellar remnant
plays a crucial role for the ν production.

In our calculation we have considered two type of galaxies:

1 Normal star formation Galaxies (NSFGs)

Galaxies with a star formation rate (SFR) similar to the Milky
Way
Low np(n = 10cm3) → low efficiency for ν production

2 Star burst galaxies (SBGs)

Old, Metal poor galaxies (zw1-2)
Galaxies with a high SFR
Relative rate of SBGs → (10-20)% of the NSFGs
High np(n = 102cm3) → high efficiency for ν production

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 11 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

NSFGs vs SFGs

The galactic environment surrounding the stellar remnant
plays a crucial role for the ν production.

In our calculation we have considered two type of galaxies:

1 Normal star formation Galaxies (NSFGs)

Galaxies with a star formation rate (SFR) similar to the Milky
Way
Low np(n = 10cm3) → low efficiency for ν production

2 Star burst galaxies (SBGs)

Old, Metal poor galaxies (zw1-2)
Galaxies with a high SFR
Relative rate of SBGs → (10-20)% of the NSFGs
High np(n = 102cm3) → high efficiency for ν production

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 11 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

NSFGs vs SFGs

The galactic environment surrounding the stellar remnant
plays a crucial role for the ν production.

In our calculation we have considered two type of galaxies:

1 Normal star formation Galaxies (NSFGs)

Galaxies with a star formation rate (SFR) similar to the Milky
Way
Low np(n = 10cm3) → low efficiency for ν production

2 Star burst galaxies (SBGs)

Old, Metal poor galaxies (zw1-2)
Galaxies with a high SFR
Relative rate of SBGs → (10-20)% of the NSFGs
High np(n = 102cm3) → high efficiency for ν production

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 11 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

NSFGs vs SFGs

The galactic environment surrounding the stellar remnant
plays a crucial role for the ν production.

In our calculation we have considered two type of galaxies:

1 Normal star formation Galaxies (NSFGs)

Galaxies with a star formation rate (SFR) similar to the Milky
Way
Low np(n = 10cm3) → low efficiency for ν production

2 Star burst galaxies (SBGs)

Old, Metal poor galaxies (zw1-2)
Galaxies with a high SFR
Relative rate of SBGs → (10-20)% of the NSFGs
High np(n = 102cm3) → high efficiency for ν production

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 11 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

NSFGs vs SFGs

The galactic environment surrounding the stellar remnant
plays a crucial role for the ν production.

In our calculation we have considered two type of galaxies:

1 Normal star formation Galaxies (NSFGs)

Galaxies with a star formation rate (SFR) similar to the Milky
Way
Low np(n = 10cm3) → low efficiency for ν production

2 Star burst galaxies (SBGs)

Old, Metal poor galaxies (zw1-2)
Galaxies with a high SFR
Relative rate of SBGs → (10-20)% of the NSFGs
High np(n = 102cm3) → high efficiency for ν production

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 11 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

RSF : Different types of galaxies

IMPRS Workshop at Ringberg Castle 2015 10th July 2015 12 / 20



Introduction
Diffuse neutrino background
γ ray diffused background

Conclusions

Stellar remnants as CR accelerators
Different types of galaxies: NSFGs vs SBGs
Break on the spectrum

ηπ:SBGs vs NSFGs
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Figure: ν’s production efficiency (ηπ) as a function of the proton energy
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SNR and HNR in NSFG’s+SBG’s neutrino flux
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SNR and HNR in NSFG’s+SBG’s neutrino flux
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γ ray background

The same hadronic interactions responsible for the µ
production will also produce very high energy γ

pp −→ pπ0

π0 −→ γγ

However, to be able to contribute to the γ ray background
measured by Fermi they must cascade to lower energies

γγ interactions with extragalactic background light (EBL)→
production of e−/e+ pairs →
e−/e+ pairs interact with EBL via the inverse compton
mechanism → γ-ray

This will introduce even more uncertainties to the resulting γ
flux
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γ ray background (arXiv:1501.04934)
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Conclusions

Cosmic ν’s are very useful to study the CR’s accelerators in
the multimessenger approach

Diffuse neutrino flux might have a (dominant) stellar remnant
origin

The ηπ will depend on the galactic environment

SBG’s are very efficient ν producers

SNRs-HNRs in NSFGs-SBGs are plausible candidates

I The SNR-HNR in NSFGs-SBGs ν dominated flux
scenario will result in a break on the spectrum

We (desperately) need more events!
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RSF as a function of z
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SBGs
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SBGs

z≈1 z≈4z=0

SPIRAL SF-AGN(Spiral) STARBURST

SF-AGN(SB)AGN1 / AGN2ELLIPTICAL
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HNRs in SBG neutrino flux (arXiv: 1310.1362)
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SBGs
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Fermi γ ray flux
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Fermi γ ray flux
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SN ν at IceCube
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