Diffuse neutrinos from extragalactic supernova remnants

Ignacio Izaguirre

10th July 2015

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

ъ

< Ξ

- CRs
- Neutrinos as cosmic messengers
- IceCube Experiment

2 Diffuse neutrino background

- Stellar remnants as CR accelerators
- Different types of galaxies: NSFGs vs SBGs
- Break on the spectrum
- (3) γ ray diffused background

4 Conclusions

 $\begin{array}{l} \text{Diffuse neutrino background} \\ \gamma \text{ ray diffused background} \\ \text{Conclusions} \end{array}$

CRs IceCube Experiment

CR Spectrum

1.5

< ⊒

< □ > < 同 > < 回 >

 $\begin{array}{l} \text{Diffuse neutrino background} \\ \gamma \text{ ray diffused background} \\ \text{Conclusions} \end{array}$

CRs IceCube Experiment

CR Spectrum

<□ > <□ > <□ > < Ξ > < Ξ > < Ξ = のへで

 $\begin{array}{l} \text{Diffuse neutrino background} \\ \gamma \text{ ray diffused background} \\ \text{Conclusions} \end{array}$

CRs IceCube Experiment

Cosmic Rays (CR)

三日 のへで

< 日 > < 同 > < 三 > < 三 > .

Diffuse neutrino background γ ray diffused background CRs IceCube Experiment Conclusions

IceCube Experiment

Introduction Diffuse neutrino background Conclusions

IceCube Experiment

IceCube Experiment: Optical modules

 γ ray diffused background

IMPRS Workshop at Ringberg Castle 2015

Diffuse neutrino background γ ray diffused background Conclusions **IceCube Experiment**

IceCube results

- ∢ ⊒ →

< □ > < 同 > < 回 >

= 900

 $\begin{array}{l} \text{Diffuse neutrino background} \\ \gamma \text{ ray diffused background} \\ \text{Conclusions} \end{array}$

CRs IceCube Experiment

IceCube results(arXiv:1405.5303)

ъ

э

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

Bottom-up approach

• The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux

ELE DOG

- ∢ ⊒ →

< □ > < 同 > <

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

Bottom-up approach

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants

ELE DOG

글 > - < 글 >

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

Bottom-up approach

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:

ELE DOG

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

Bottom-up approach

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:
 - Supernova remnants (SNRs)

ELE DOG

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

Bottom-up approach

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:
 - Supernova remnants (SNRs)
 - Stars with $M > 8 M_{\odot}$
 - CR difusse shock acceleration mechnism
 - Capable of generating ν flux up to 100–150 TeV

ELE DOG

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

Bottom-up approach

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:
 - Supernova remnants (SNRs)
 - Stars with $M > 8 M_{\odot}$
 - CR difusse shock acceleration mechnism
 - Capable of generating ν flux up to 100–150 TeV
 - Hypernova remmants (HNRs)
 - $\bullet\,$ Small fraction of SNRs (15 %) with extreme energetic ejecta
 - Stars with $M > (50-80) M_{\odot}$, low metallicity (population II)
 - Capable of generating ν flux up to 1–10 PeV

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● ● ● ● ●

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

NSFGs vs SFGs

• The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

NSFGs vs SFGs

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:

・ロト ・ 早 ・ モ ト ・ 王 ト ・ クタマ

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

NSFGs vs SFGs

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:
- Normal star formation Galaxies (NSFGs)

- 4 同 1 - 4 三 1 - 5 1 - 9 0 0

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

NSFGs vs SFGs

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:
- Normal star formation Galaxies (NSFGs)
 - Galaxies with a star formation rate (SFR) similar to the Milky Way
 - Low $n_p(n = 10 {
 m cm}^3)
 ightarrow$ low efficiency for u production

(4月) (日) (日) (日) (1000)

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

NSFGs vs SFGs

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:
- Normal star formation Galaxies (NSFGs)
 - Galaxies with a star formation rate (SFR) similar to the Milky Way
 - Low $n_p(n=10{
 m cm}^3)
 ightarrow$ low efficiency for u production
- Star burst galaxies (SBGs)

▲冊▶ ▲目▶ ▲目▶ 目目 のへや

 $\begin{array}{c} \text{Introduction} \\ \textbf{Diffuse neutrino background} \\ \gamma \text{ ray diffused background} \\ \text{Conclusions} \end{array}$

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

NSFGs vs SFGs

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:
- Normal star formation Galaxies (NSFGs)
 - Galaxies with a star formation rate (SFR) similar to the Milky Way
 - Low $n_p(n = 10 {
 m cm}^3)
 ightarrow$ low efficiency for u production
- Star burst galaxies (SBGs)
 - Old, Metal poor galaxies (z⊆1-2)
 - Galaxies with a high SFR
 - Relative rate of SBGs \rightarrow (10-20)% of the NSFGs
 - High $n_{
 ho}(n=10^2{
 m cm}^3)
 ightarrow$ high efficiency for u production

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のので

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

< 口 > < 同

R_{SF} : Different types of galaxies

10th July 2015 12 / 20

-

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

η_{π} :SBGs vs NSFGs

Figure: ν 's production efficiency (η_{π}) as a function of the proton energy

ELE DOG

- ₹ ₹ ►

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

SNR and HNR in NSFG's+SBG's neutrino flux

-

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

SNR and HNR in NSFG's+SBG's neutrino flux

1= nac

Stellar remnants as CR accelerators Different types of galaxies: NSFGs vs SBGs Break on the spectrum

SNR and HNR in NSFG's+SBG's neutrino flux

1= 9QQ

γ ray background

• The same hadronic interactions responsible for the μ production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

•
$$\pi^0 \longrightarrow \gamma \gamma$$

<

-

γ ray background

• The same hadronic interactions responsible for the μ production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

• $\pi^0 \longrightarrow \gamma\gamma$

• However, to be able to contribute to the γ ray background measured by Fermi they must cascade to lower energies

γ ray background

• The same hadronic interactions responsible for the μ production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

• $\pi^0 \longrightarrow \gamma\gamma$

- However, to be able to contribute to the γ ray background measured by Fermi they must cascade to lower energies
 - $\gamma\gamma$ interactions with extragalactic background light (EBL) \rightarrow production of e^-/e^+ pairs \rightarrow

γ ray background

• The same hadronic interactions responsible for the μ production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

• $\pi^0 \longrightarrow \gamma\gamma$

- However, to be able to contribute to the γ ray background measured by Fermi they must cascade to lower energies
 - $\gamma\gamma$ interactions with extragalactic background light (EBL) \rightarrow production of e^-/e^+ pairs \rightarrow
 - e^-/e^+ pairs interact with EBL via the inverse compton mechanism $\to \gamma\text{-ray}$

・ロト ・同ト ・ヨト ・ヨト ・ ション ののの

γ ray background

• The same hadronic interactions responsible for the μ production will also produce very high energy γ

•
$$pp \longrightarrow p\pi^0$$

• $\pi^0 \longrightarrow \gamma\gamma$

- However, to be able to contribute to the γ ray background measured by Fermi they must cascade to lower energies
 - $\gamma\gamma$ interactions with extragalactic background light (EBL) \rightarrow production of e^-/e^+ pairs \rightarrow
 - e^-/e^+ pairs interact with EBL via the inverse compton mechanism $\to \gamma\text{-ray}$
- $\bullet\,$ This will introduce even more uncertainties to the resulting $\gamma\,$ flux

・ロト ・同ト ・ヨト ・ヨト ・ ション ののの

γ ray background (arXiv:1501.04934)

1.2

э

< 1 →

Conclusions

- Cosmic ν 's are very useful to study the CR's accelerators in the *multimessenger approach*
- Diffuse neutrino flux might have a (dominant) stellar remnant origin
- The η_{π} will depend on the galactic environment
 - SBG's are very efficient ν producers
 - SNRs-HNRs in NSFGs-SBGs are plausible candidates
 - \blacktriangleright The SNR-HNR in NSFGs-SBGs ν dominated flux scenario will result in a break on the spectrum
- We (desperately) need more events!

Thank you for your attention

三日 のへの

→

Image: A math a math

Back up slides

< ≣ ►

三日 のへの

・ロト ・日下・ ・ 日下

R_{SF} as a function of z

IMPRS Workshop at Ringberg Castle 2015

<u>10th July 2015</u> 2 / 20

- E

1= nac

Image: A mathematical states and a mathem

SBGs

三日 のへの

イロン イロン イヨン イヨン

SBGs

HNRs in SBG neutrino flux (arXiv: 1310.1362)

SBGs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fermi γ ray flux

<ロト <部ト < 注ト < 注ト

三日 のへの

Fermi γ ray flux

三日 のへの

イロン イロン イヨン イヨン

SN ν at IceCube

