Simulation of the time structure of hadronic showers in calorimeters with gas and with scintillator readout

IMPRS Young Scientist Workshop at Ringberg Castle 2015

Philipp Goecke

pgoecke@mpp.mpg.de

517C B133 F9A9 F3CA B0DE 7809 940E BB09 1510 4A6D
Outline

• Motivation
• Particle Showers
• Calorimeter
• Shower time development
• Hadronic calorimeter at linear colliders
• Simulation results / comparisons
Motivation

- Calorimeters determine particle energy in destructive measurements
- The time structure is interesting because it enables us to weight differently which allows higher resolution of subshower
- Tungsten Timing Test Beam (T3B) experiment is designed to provide validation of hadronic shower models
 - Measurement of the time structure of the interaction of hadrons in Calorimeter with nanosecond precision and high spatial resolution
EM Showers

- High energy electrons loose energy mostly through Bremsstrahlung
- Which leads to high energetic photons
- Photon with $>1\text{MeV} \rightarrow \text{e}^+\text{e}^-$ pair production
- Electromagnetic cascades, formation of a shower
Hadronic showers

- Hadronic showers produced by high energy hadrons interacting with matter
- Nuclear and strong interactions
- Produce secondary lower energy particles
 - Relativistic hadrons: result mostly in Pions; 30% of which are $\pi^0 \rightarrow 2$ photons \rightarrow EM
 - Excitation
 - Nuclear spallation
 - Fission

\{ Result in production of neutrons which lead to extended time structure \}
Calorimeter

• A calorimeter is used to measure energy of a particle
• Particles get absorbed
• The denser the absorber is → the more energy the particles lose passing through
• Two types of Calorimeter
 – Electromagnetic calorimeter measure EM interactions
 – Hadronic calorimeter measure particles that interact via the strong nuclear force

• We use a sampling calorimeter
Sampling Calorimeter

- Material that produces the particle shower is distinct from the material that measures the deposited energy
- Dense material is used to produce a shower that evolves quickly in a limited space
- Disadvantage: most of the energy is deposited in the wrong material and is not measured
- Thus the total shower energy must be estimated
Time development

- Different phases of the shower

source: C. Soldner PhD Thesis
Time development

Early phase: instantaneous components (mainly relativistic hadrons and electromagnetic showers)

source: C. Soldner PhD Thesis
Time development

Early phase: instantaneous components (mainly relativistic hadrons and electromagnetic showers)

Late phase: slow neutrons capture, evaporation, spallation

source: C. Soldner PhD Thesis
Time development

Early phase: instantaneous components (mainly relativistic hadrons and electromagnetic showers)

Intermediate phase: neutron scattering

Late phase: slow neutrons capture, evaporation, spallation

source: C. Soldner PhD Thesis
Intermediate phase: neutron scattering

- Less Hydrogen in gaseous detector (density, material)
 - Less sensitive to neutron elastic scattering
- Assumption (backed by data):
 - Contribution from neutron elastic scattering should go down with less Hydrogen
- Monte Carlo Simulations can verify our assumption
Several concepts for the hadronic calorimeter at linear colliders

- Plastic scintillators tiles (left) with Silicon Photomultiplier (SiPMs) readout
- Resistive Plate Chambers (RPCs) with digital readout (DHCAL)

- High granularity \rightarrow particle flow event reconstruction
Several concepts for the hadronic calorimeter at linear colliders

- Plastic scintillators tiles (left) with Silicon Photomultiplier (SiPMs)
- Resistive Plate Chambers (RPCs) with digital readout (DHCAL)

Particles passing through

Ionizing Gas

Electric field → knock further electrons free → avalanche
Setup

- Test beam at CERN SPS H8 beam line
- T3B behind HCal
- 1x Scintillator (T3B)
- 1x Gas (FastRPC)
Setup

- Test beam at CERN SPS H8 beam line
- T3B behind HCal
- 1x Scintillator (T3B)
- 1x Gas (FastRPC)
Simulation of the last Layer

same # of 60 GeV Pions → Steps in Geant4

more in Scintillator due to density

neutrons lead to energy deposits at large distances from beam axis
Time of first hit

- When a particle loses more energy than the energy of a Minimum Ionizing Particle, this interaction is counted as first hit
 - Minimum Ionizing Particles (MIPs) are charged particles, which embody the minimum ionizing energy loss in substances
 - A hit is a physical interaction in the sensitive region of a detector
Data taken in test beam

- Inside the special Layer
- Channel vs. Time of 1st Hit vs. number of entries per bin
- 80 GeV Pions
- Data taken from FastRPC Gas detector
- After few tens of ns the only energy contributions remaining come from neutrons

Not normalised
Time of first Hit simulated

- Channel vs Time of first hit vs number of entries per bin
- Much more signal in scintillator in late times
Scintillator vs. RPC measured

- RPC drops steeper
- Signals get back together
- Interpretation backed by data
- Late contribution mostly due to neutrons
- zoom

(a) Comparison of the [-20,200] ns time windows between FastRPC and T3B.
Scintillator vs. RPC simulated

- Normalized over the first 3.2 ns
- Gas drops steeper
- Signal gets back together
- No smearing
Summary and Outlook

- These new calorimeters and their understanding can help to improve simulations
- With the simulation we want to understand in detail what happens
- Made Monte Carlo simulation with GEANT4
- Full simulation of CALICE Detector Prototype
- Quantitative comparison of simulation with measured data
- All the presented is work in progress
The End

Thank you for your attention!