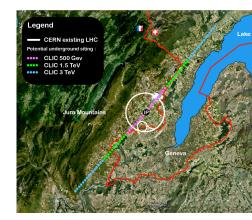
Electron acceleration in plasma wakefield accelerators

Yasmine Israeli

Max-Planck-Institut für Physik

July 8, 2015

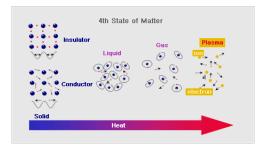

Conventional Particle Accelerators

RF accelerators:

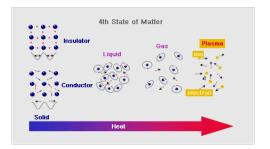
- LHC (CERN), 27 km, \sqrt{s} =14 TeV
- SLC (SLAC), 3.2 km, \sqrt{s} =100 GeV

In devolopment:

- LCC (ILC+CLIC), \geq 30 km
- FCC, 80-100 km


MPP

The energy gain for a particle: $\Delta E = GL$ *G*-acceleration gradient, *L*-distance


$$G_{RF} = 20 - 100 \; [MeV/m] \; \ll G_{plasma} = 1 - 100 \; [GeV/m]$$

Plasma wakefields accelerators:

- $\Rightarrow \mathsf{Save \ space}$
- $\Rightarrow \mathsf{Save \ costs}$

"Plasma is loosely described as an electrically neutral medium of unbound positive and negative particles" (from Wikipedia) Plasma Frequency: $\omega_{pe} = \sqrt{\frac{n_{oe}e^2}{\epsilon_o m_e}}$, $n_{oe} - plasma density$

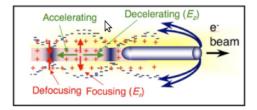
"Plasma is loosely described as an electrically neutral medium of unbound positive and negative particles" (from Wikipedia) Plasma Frequency: $\omega_{pe} = \sqrt{\frac{n_{oe}e^2}{\epsilon_o m_e}}$, $n_{oe} - plasma density$

Not any ionized gas can be called plasma!

Particles must exhibit collective behavior

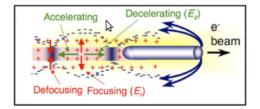
 \Rightarrow not only local forces but long range forces as well!

The charged particles collide frequently with neutral atoms
 ⇒ motion is controlled by hydrodynamic **not** electromagnetic forces.


Debye Length: The distance that a charge is screened by a factor of $\sim e$

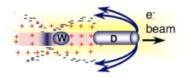
• L dimension of a system
$$\gg \lambda_D = \sqrt{\frac{\epsilon_o KT}{n_{oe}e^2}}$$
 Debye length

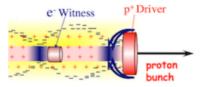
• Plasma needs enough
particles to exist
$$N_D \gg 1$$
,
 $N_D = n_{oe} \cdot \frac{4}{3} \pi \lambda_D^3$


Debve sphere

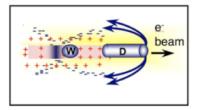
What Are Plasma Wakefields?

- An charged beam/laser pulse is injected into a neutral plasma.
- The space-charge field of the beam rapidly expels the plasma electrons.
- The plasma ions have $m_i \gg m_e \implies$ remain stationary during the time scale of the bunch length.
- $n_{bo} > n_{pe} \Longrightarrow$ an ion column is formed.


What Are Plasma Wakefields?

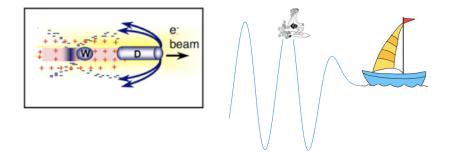


- The expelled plasma electrons now witness the space-charge field of the ion column and are pulled back in towards the beam axis.
- \bullet From momentum conservation \Longrightarrow plasma electrons overshoot the axis.
- Plasma electron oscillate with ω_{pe}


Plasma Wakefields: Drive Bunch

- Carry multi-kilojules of energy
- $L_z^{drive \ beam} \leq \lambda_{pe}$
- Same phase velocity as of the plasma wave $v_{\phi}^w = v_{\phi}^b$
- Negative charged beam : pencil shape
- Positive charged beam : pancake shape

Plasma Wakefields: Witness Bunch



● Initial energy: relativistic ⇔ witness bunch stays on the same wakefield phase

Plasma Wakefields: Witness Bunch

• Location: useful phase - acceleration and focusing.

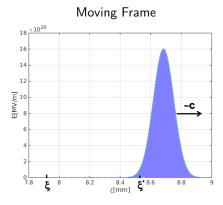
There is NO Magic!

Energy conservation:

- The energy gain for a particle: $\Delta E = GL$
- Q_{witness} < Q_{drive}

Analytic Description

Assuming $n_{bo} \ll n_{pe}$


Linearization:

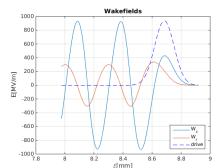
 $n_e = n_0 + n_1$ $v_e = v_0 + v_1$ $E = E_0 + E_1$ $B = B_0 + B_1$ Equation of motion: $\frac{dv}{dt}m_e = -e(E + v \times B)$ Equation of continuity: $\frac{\partial n_e}{\partial t} + \nabla(n_e \cdot v_e) = 0$ Gauss law: $\nabla \cdot E = \frac{\rho}{-}$ Ampere law: $\nabla \times B = \mu_o (J + \epsilon_o \frac{\partial E}{\partial t})$

Solving for a frame moving in the speed of light - $\xi = ct - z$

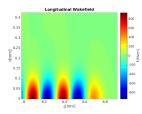
Linear Theory $n_{bo} \ll n_{pe}$

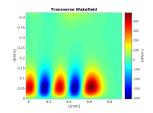
Longitudinal wakefield:
$$W_z(\xi, r) = \frac{e}{\epsilon_o} \int_{\xi}^{\infty} n_{b\parallel}(\xi') \cdot \cos(k_p(\xi'-\xi)) d\xi' \cdot R(r)$$

Transverse wakefield: $W_r(\xi, r) = \frac{e}{\epsilon_o k_p} \int_{\xi}^{\infty} n_{b\parallel}(\xi') \cdot \sin(k_p(\xi'-\xi)) d\xi' \cdot \frac{dR(r)}{dr}$
 $R(r) = k_p^2 \int_{o}^{r} r' dr' n_{b\perp}(r') I_o(k_p r') K_o(k_p r) + k_p^2 \int_{r}^{\infty} r' dr' n_{b\perp}(r') I_o(k_p r) K_o(k_p r')$



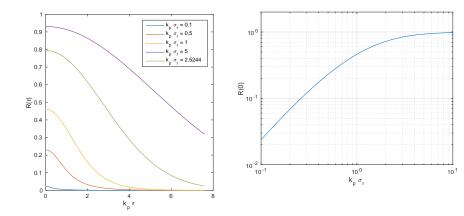
Longitudinal axis: $\xi = ct - z$, Transverse axis: r


Yasmine Israeli


MPP

Linear Theory

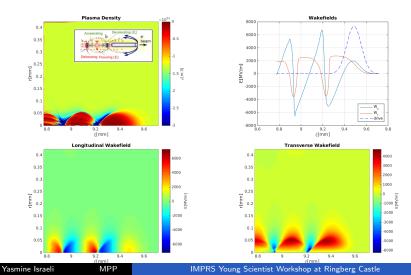
 $n_{bo} \ll n_{pe}$



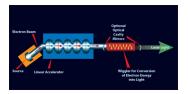
Yasmine Israeli

MPP

Linear Theory: R(r)


$$\begin{aligned} R(r) &= k_p^2 \int_o^r r' dr' n_{b\perp}(r') I_o(k_p r') \mathcal{K}_o(k_p r) + k_p^2 \int_r^\infty r' dr' n_{b\perp}(r') I_o(k_p r) \mathcal{K}_o(k_p r') \\ \mathcal{W}_z(\xi, r) \propto R(r), \quad \mathcal{W}_r(\xi, r) \propto \frac{dR(r)}{dr} \end{aligned}$$

Nonlinear Theory - The Bubble Regime

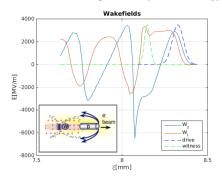

$$n_{bo} \geq n_{pe}$$

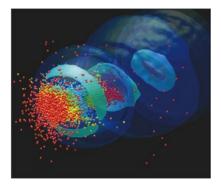
Inside the bubble: W_z independent of r, $W_r \propto r$

17

Swiss Free Electron Laser

- Free-electron lasers providing very intense and tightly focused beams of x-rays.
- X-rays can be used to map the atomic structure of materials, including biomolecules and nanometer scale structures.


• The SwissFEL baseline design aims to produce FEL pulses covering the wavelength range 0.1-7 nm.


Swiss Free Electron Laser

Accelerator beam parameters	
Beam energy	2.1-5.8 GeV
Peak current	2.7 kA
Charge	200 pC
Energy spread	350 keV
Emittance	0.43 mm mrad

At the moment: maximum 5.8 GeV **we want:** 13.6 GeV **to get:** x-ray with energy of 1 mJ.

- Plasma based accelerators can save costs and space compare to RF accelerators.
- The technique is base on a electromagnetic disturbance moving with relativistic velocity in plasma creating plasma wakefields.
- Particle beams can be accelerated "surfing" on the wakefield in the right phase.
- Adding plasma accelerator to the current design of the Swiss FEL can increase the photons intensity and energy.
- Using Simulations, this possibility is being studied.

Thank you for your attention!

Backup