

Optimization of the B meson vertex resolution for the Belle II experiment

Christian Roca Catalá

Max-Planck Institut für Physik - Belle Group crisroc@mpp.mpg.de

IMPRS YS Workshop, Jul 6-10, 2015

Belle II experiment at SuperKEKB

New Tracking System

- Pixel Vertex Detector (PXD)
- Silicon Vertex Detector (SVD)
- Central Drift Chamber (CDC)

Nano-Beam Scheme σ_z σ_x d 2φ Half crossing angle: φ

Instantaneous luminosity

- KEKB: $2 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$
- SuperKEKB:
 - $8 \times 10^{35} \, \text{cm}^{-2} \, \text{s}^{-1}$

CP violation and time dependent analysis

350 300

 $\Upsilon(4s) \to \mathsf{B}^0 \bar{\mathsf{B}^0} \to \mathsf{f}_\mathit{CP} \mathsf{f}_\mathit{tag} \quad ; \quad \mathit{f}_\mathit{CP} \to \mathit{J}/\psi \mathit{K}_\mathcal{S}, \mathsf{f}_\mathit{tag} \to \mathsf{all} \ \mathsf{modes}$

Asyr

Asymmetry in the B/\bar{B} decay to $f_{\mbox{\it CP}}$

$$\mathcal{A}_{CP} = \frac{\Gamma(\bar{B}^0 \to f_{CP}, \Delta t) - \Gamma(B^0 \to f_{CP}, \Delta t)}{\Gamma(\bar{B}^0 \to f_{CP}, \Delta t) + \Gamma(B^0 \to f_{CP}, \Delta t)} = A_{CP} \cos(\Delta m_d \Delta t) + S_{CP} \sin(\Delta m_d \Delta t)$$

• A_{CP} : direct CP ; S_{CP} : mixing induced CP

- Events / 0.5 ps 250 200 150 100 50 0.6 0.4 Asymmetry 0.2 O -0.2 -0.4 -0.6 Δt (ps)
- Kinetic reconstruction
 →CP side
- Flavour ID →tag side

* PRL 108, 171802 (2012) Christian Roca Catalá (MPP-Belle2)

Pixel Vertex Detector - Importance of good resolution

What is the contribution of the Vertex resolution?

- Time-dependent analysis depend on the good measurement of Δt obtained from Δz
- Belle: B_{tag} resolution (89 μ m) $\sim 30\%$ worse than B_{CP} resolution (63 μ m)
- B_{tag} resolution depends heavily on the fitting algorithm.
- lacktriangle The contribution for Δz that needs to be specially optimized is the B_{tag} vertex

Vertex resolution of the CP side

$$\mathsf{B}^0(\bar{\mathsf{B}}^0) \!\to\! \! \mathsf{f}_{\mathit{CP}} = [J/\psi \to \mu^+\mu^-] K_{\mathcal{S}}$$

Legend

- Resolution distr. = vertex MC vertex
- ullet 3 Gaussian fit with std. dev σ
- ullet Resolution = weighted avg. σ

Observations

- μ tracks \geq 1 PXD hit
- Resolution improvement from Belle (63 μm) - factor 2.7
- Small Shift of 1.8 μm (under investigation)

Belle II simulation using PXD

B_{tag} Vertex Fitting Standard Algorithm

How is the fit performed?

- $oldsymbol{0}$ B_{tag} vertex fit uses the **tracks remaining** after the reconstruction of the CP side
- ${f Q}$ No B_{tag} reconstruction is performed (loss of statistics)
- Algorithm: RAVE Adaptive Vertex Fit (AVF)* with spatial constraints

^{*:} W. Waltenberger, R. Frühwirth and P. Vanlaer: Adaptive Vertex Fitting. CERN-CMS-NOTE-2008-033 (Jul 2008)

Standard fitting algorithm and spatial constraint

RAVE Adaptive Vertex Fit (AVF) with constraints

All tracks are used and **weighted** following two criteria:

- Outlying and isolated tracks are down-weighted
- Tracks weighted according their position with respect to the constraint

Weighting works iteratively

What is the constraint?

A spatial constraint is defined within which the B is expected to decay

- Ellipsoid of 600 μm long axis
- Centered in the Beam Spot
- Along the boost direction

Belle II B_{tag} vertex Resolution - Standard algorithm

In comparison with BELLE:

• Resolution = 89 μm - factor 1.5

In comparison with BELLE:

- Resolution = 0.92 ps factor 1.2
- Lower factor → Lower Boost!

Improvement in the B_{tag} vertex resolution lower than for B_{CP}

Dominated by the algorithm! PXD precision not fully used.

Can we do better than this? New algorithm

New Algorithm: Using Flavor Tagging Information

Flavor Tagging Algorithm:

- Take all the remaining tracks after the reconstruction of the CP side.
- Find the tracks best suited for Flavor Tagging
- Extract probabilistic information from those tracks
 - Prob. of being a daughter from Btag
 - Prob. of belonging to a given decay mode/category
- ullet Finally return a **parameter** $\in [-1,1]$ that reflects how good the **flavor** can be identified
- Flavor id. crucial to measure CP

Categories	Targets
Electron	e ⁻
(Intermediate Electron)	e^+
Muon	μ^-
(Intermediate Muon)	μ^+
KinLepton	e ⁻
Kaon	K-
KaonPion	K^- , π^+
SlowPion	π^+
FastPion	π^-
MaximumP	ℓ^- , π^-
FSC	ℓ^- , π^+
Lambda	٨
Total= 10 (12)	

New Algorithm: Single Track Fit (STF)

Constraint of New Algorithm

Why do we move the constraint?

Secondary tracks are **not used** in the fit, and therefore:

- Constraint centred at the BS is no longer down weighting secondary tracks
- B-meson **decays** in average \sim 120 μ m
- If the constraint remains centred at BS, large bias appears (~15 µm)

New algorithm: B_{tag} vertex resolution

Events with successful single track fit

All events

In comparison with Belle:

 $\textbf{Resolution} = 89\,\mu\text{m}$

- Single Track Fit Factor 2.2
- STF + Standard Alg. Factor 1.9

In comparison with Standard Algorithm:

 $\textbf{Resolution} = 56\,\mu\text{m}$

- Single Track Fit Factor 1.4
- STF+ Standard Alg. Factor 1.2
- \bullet Single Track Fit $triggered \sim 15\%$ of all B_{tag} cases
- Resolution **improvement** with respect to Belle almost reached **CP side**.
 - CP side factor 2.8
 - Tag side factor 2.2 (Single Track Fit) , factor 1.9 (Combined)

New algorithm: Δt distribution

Events with successful single track fit

All events

In comparison with Belle:

Resolution = 0.92 ps

- Single Track Fit Factor 1.6
- SFT + Standard Alg. Factor 1.4

In comparison with Stand. alg.:

Resolution = 0.78 ps

- Single Track Fit Factor 1.3
- SFT + Standard Alg. Factor 1.2
- \bullet Single Track Fit $triggered \sim 15\%$ of all B_{tag} cases
- Resolution **improvement** with respect to Belle almost reached **CP side**.
 - CP side factor 2.8
 - Tag side factor 2.2 (Single Track Fit) , factor 1.9 (Combined)

Summary

Vertex resolution and optimization using PXD

- B_{CP} Vertex resolution (23 μm): improved a factor 2.7 with respect to Belle (63 μm).
- B_{tag} Vertex resolution with Standard Algorithm (57 μm): improved a factor 1.5 with respect to Belle (89 μm).
- Improvement in Tagged side do not scale as in Reconstructed side
- New algorithm performs a single track fit with higher resolution (39 μm) with 15% efficiency, improvement by a factor 2.2 with respect to Belle.
- B_{tag} Vertex resolution with Standard Algorithm + Single Track Fit (47 μm): improved a factor 1.9 with respect to Belle (89 μm).

Outlook

- Understand the small shift on the CP side vertex
- Improve the single track selection criteria in order to increase the efficiency.
- Improve the B_{tag} vertex fit constraint's parameters to reduce the bias in the resolution

THANKS FOR YOUR ATTENTION!

Preliminary analysis - semileptonic decay

$$B_{\mathsf{tag}} o \mu^- ar{
u}_\mu D^{(*)+}$$

and conjugate

USING ALL TRACKS

USING MC MATCHED MUONS

Cut analysis - Generic decay (work still on progress)

$$B_{tag} o {
m generic}$$

Purity analysis

- Perform several cuts on the variables of the tracks
- Compare with Monte
 Carlo information
- Aim: Kill the bad ones and keep the good ones!
- High purity acquainted after selection

Normalized distribution of Purities

B_{tag} Vertex Resolution after cutting

B_{tag} Vertex Resolution using only tracks not coming from B

