Optimization of the B meson vertex resolution for the Belle II experiment

Christian Roca Catalá

Max-Planck Institut für Physik - Belle Group

crisroc@mpp.mpg.de

IMPRS YS Workshop, Jul 6-10, 2015
Belle II experiment at SuperKEKB

New Tracking System
- Pixel Vertex Detector (PXD)
- Silicon Vertex Detector (SVD)
- Central Drift Chamber (CDC)

Instantaneous luminosity
- KEKB: $2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- SuperKEKB: $8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
CP violation and time dependent analysis

\[\Upsilon(4S) \rightarrow B^0 \bar{B}^0 \rightarrow f_{CP} f_{tag} ; \quad f_{CP} \rightarrow J/\psi K_S, f_{tag} \rightarrow \text{all modes} \]

Asymmetry in the B/\bar{B} decay to f_{CP}

\[A_{CP} = \frac{\Gamma(\bar{B}^0 \rightarrow f_{CP}, \Delta t) - \Gamma(B^0 \rightarrow f_{CP}, \Delta t)}{\Gamma(\bar{B}^0 \rightarrow f_{CP}, \Delta t) + \Gamma(B^0 \rightarrow f_{CP}, \Delta t)} \]

\[A_{CP} \cos(\Delta m_d \Delta t) + S_{CP} \sin(\Delta m_d \Delta t) \]

- A_{CP}: direct CP; S_{CP}: mixing induced CP

- Kinetic reconstruction
 → CP side
- Flavour ID
 → tag side

* PRL 108, 171802 (2012)*

Christian Roca Catalá (MPP-Belle2)
IMPRS YS Workshop
Jul 10, 2015
2/13
What is the contribution of the Vertex resolution?

- **Time-dependent analysis** depend on the good measurement of Δt - obtained from Δz
- Belle: B_{tag} resolution (89 μm) \sim 30% **worse** than B_{CP} resolution (63 μm)
- B_{tag} resolution depends heavily on the fitting **algorithm**.
- The **contribution** for Δz that needs to be specially **optimized** is the B_{tag} vertex

Christian Roca Catalá (MPP-Belle2)
IMPRS YS Workshop
Jul 10, 2015
Vertex resolution of the CP side

\[B^0(\bar{B}^0) \rightarrow f_{CP} = [J/\psi \rightarrow \mu^+ \mu^-]K_S \]

Legend
- Resolution distr. = vertex - MC vertex
- 3 Gaussian fit with std. dev \(\sigma \)
- Resolution = weighted avg. \(\sigma \)

Observations
- \(\mu \) tracks \(\geq 1 \) PXD hit
- Resolution improvement from Belle (63 \(\mu \)m) - factor 2.7
- Small Shift of 1.8 \(\mu \)m (under investigation)

Belle II simulation using PXD

\[J/\psi \rightarrow \mu^+ \mu^- \text{ VertexZ Resolution} \]

\(\sigma = 22.5 \mu \text{m} \)
How is the fit performed?

1. B_{tag} vertex fit uses the **tracks remaining** after the reconstruction of the CP side

2. **No** B_{tag} reconstruction is performed (**loss of statistics**)

3. **Algorithm:** RAVE Adaptive Vertex Fit (AVF)* with spatial constraints

RAVE Adaptive Vertex Fit (AVF) with constraints

All tracks are used and weighted following two criteria:

1. Outlying and isolated tracks are down-weighted
2. Tracks weighted according their position with respect to the constraint

Weighting works iteratively

What is the constraint?

- A spatial constraint is defined within which the B is expected to decay
 - Ellipsoid of 600 µm long axis
 - Centered in the Beam Spot
 - Along the boost direction

Standard 600µm long constraint Centered in the BeamSpot
Belle II B_{tag} vertex Resolution - Standard algorithm

In comparison with BELLE:
- Resolution $= 89 \, \mu m$ - factor 1.5

- Improvement in the B_{tag} vertex resolution lower than for B_{CP}
- Dominated by the algorithm! PXD precision not fully used.

- Can we do better than this? New algorithm
New Algorithm: Using Flavor Tagging Information

Flavor Tagging Algorithm:

- Take all the **remaining** tracks after the reconstruction of the CP side.
- Find the tracks best suited for **Flavor Tagging**
- Extract **probabilistic** information from those tracks
 - Prob. of being a **daughter** from B_{tag}
 - Prob. of belonging to a given decay mode/category
- Finally return a **parameter** $\in [-1, 1]$ that reflects how good the **flavor** can be identified
- **Flavor id. crucial to measure** \mathcal{C}/\mathcal{P}

<table>
<thead>
<tr>
<th>Categories</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td>e^-, e^+</td>
</tr>
<tr>
<td>(Intermediate Electron)</td>
<td></td>
</tr>
<tr>
<td>Muon</td>
<td>μ^-, μ^+</td>
</tr>
<tr>
<td>(Intermediate Muon)</td>
<td></td>
</tr>
<tr>
<td>KinLepton</td>
<td>e^-</td>
</tr>
<tr>
<td>Kaon</td>
<td>K^-</td>
</tr>
<tr>
<td>KaonPion</td>
<td>K^-, π^+</td>
</tr>
<tr>
<td>SlowPion</td>
<td>π^+</td>
</tr>
<tr>
<td>FastPion</td>
<td>π^-</td>
</tr>
<tr>
<td>MaximumP</td>
<td>ℓ^-, π^-</td>
</tr>
<tr>
<td>FSC</td>
<td>ℓ^-, π^+</td>
</tr>
<tr>
<td>Lambda</td>
<td>Λ</td>
</tr>
</tbody>
</table>

Total = 10 (12)
New Algorithm: Single Track Fit (STF)

Constraint of New Algorithm

Secondary tracks are not used in the fit, and therefore:

- **Constraint** centred at the BS is no longer down weighting secondary tracks
- B-meson **decays** in average $\sim 120 \mu m$
- If the **constraint** remains centred at BS, **large bias** appears ($\sim 15 \mu m$)

Why do we move the constraint?

If this does not converge...

EXTRA: If possible: perform fit removing tracks with NO hits on the PXD
New algorithm: B_{tag} vertex resolution

Events with successful single track fit

All events

In comparison with Belle:

Resolution = 89 μm
- Single Track Fit Factor 2.2
- STF + Standard Alg. Factor 1.9

In comparison with Standard Algorithm:

Resolution = 56 μm
- Single Track Fit Factor 1.4
- STF + Standard Alg. Factor 1.2

- Single Track Fit triggered \sim 15% of all B_{tag} cases
- Resolution improvement with respect to Belle almost reached CP side.
 - CP side - factor 2.8
 - Tag side - factor 2.2 (Single Track Fit), factor 1.9 (Combined)
New algorithm: Δt distribution

Events with successful single track fit

All events

In comparison with Belle:

Resolution = 0.92 ps
- Single Track Fit Factor 1.6
- SFT + Standard Alg. Factor 1.4

In comparison with Stand. alg.:

Resolution = 0.78 ps
- Single Track Fit Factor 1.3
- SFT + Standard Alg. Factor 1.2

- Single Track Fit triggered \sim 15\% of all B_{tag} cases

- Resolution improvement with respect to Belle almost reached CP side.
 - CP side - factor 2.8
 - Tag side - factor 2.2 (Single Track Fit), factor 1.9 (Combined)
Vertex resolution and optimization using PXD

<table>
<thead>
<tr>
<th>B<sub>CP</sub> Vertex resolution (23 µm):</th>
<th>improved a factor 2.7 with respect to Belle (63 µm).</th>
</tr>
</thead>
<tbody>
<tr>
<td>B<sub>tag</sub> Vertex resolution with Standard Algorithm (57 µm):</td>
<td>improved a factor 1.5 with respect to Belle (89 µm).</td>
</tr>
<tr>
<td>Improvement in Tagged side do not scale as in Reconstructed side</td>
<td></td>
</tr>
<tr>
<td>New algorithm performs a single track fit with higher resolution (39 µm) with 15% efficiency, improvement by a factor 2.2 with respect to Belle.</td>
<td></td>
</tr>
<tr>
<td>B<sub>tag</sub> Vertex resolution with Standard Algorithm + Single Track Fit (47 µm):</td>
<td>improved a factor 1.9 with respect to Belle (89 µm).</td>
</tr>
</tbody>
</table>

Outlook

- Understand the small shift on the CP side vertex
- Improve the single track selection criteria in order to increase the efficiency.
- Improve the B_{tag} vertex fit constraint’s parameters to reduce the bias in the resolution
THANKS FOR YOUR ATTENTION!

MASCARA

APPROVES
Preliminary analysis - semileptonic decay

$B_{tag} \rightarrow \mu^- \bar{\nu}_\mu D^{(*)} +$ and conjugate

USING ALL TRACKS

USING MC MATCHED MUONS

TagVz Resolution

![Graph](image1)

- Fit Shift = -0.7 ± 0.4 µm
- Res = 61.3 ± 0.7 µm

![Graph](image2)

- Fit Shift = -15.2 ± 0.5 µm
- Res = 52.5 ± 0.6 µm

Christian Roca Catalá (MPP-Belle2)
Cut analysis - Generic decay (work still on progress)

\[B_{tag} \rightarrow \text{generic} \]

Purity analysis

- Perform several **cuts** on the variables of the **tracks**
- Compare with **Monte Carlo** information
- Aim: Kill the **bad** ones and keep the **good** ones!
- **High purity** acquainted after selection

![Normalized distribution of Purities](image-url)

- **Initial purity**
- **Purity after the 8th Cut**
TagVz Resolution

- Fit: Shift = 3.4 ± 0.8 μm
- Res = 56.6 ± 1.3 μm
- Efficiency 78
B_{tag} Vertex Resolution using only tracks not coming from B

TagVz Resolution

Events

Shift = 3.4 ± 1.4 μm
Res = 97.6 ± 2.4 μm
Efficiency 54