String Theory and Cosmic Inflation

Florian Wolf

LMU and MPI for Physics, Munich

Ringberg Workshop on July 8, 2015

Contents

Introduction

What is String Phenomenology? What is Inflation? Motivation

Theoretical Framework

Moduli Space Fluxes and Moduli Stabilization Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario

A simple Model Axion Monodromy Inflation

Conclusion and Outlook

Contents

Introduction

What is String Phenomenology? What is Inflation? Motivation

Theoretical Framework

Moduli Space Fluxes and Moduli Stabilization Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario

A simple Model Axion Monodromy Inflation

Conclusion and Outlook

What is String Phenomenology?

String Theory:

- ▶ fundamental objects: strings instead of particles
- ▶ there are 5 superstring theories in 10d

What is String Phenomenology?

String Theory:

- ▶ fundamental objects: strings instead of particles
- ▶ there are 5 superstring theories in 10d

String Phenomenology:

String Theory in 10d Compactification

Standard Model in 4d

What is String Phenomenology?

String Theory:

- ▶ fundamental objects: strings instead of particles
- ▶ there are 5 superstring theories in 10d

String Phenomenology:

String Theory in 10d Compactification

Standard Model in 4d

Here: type IIB string theory with orientifold projection

What is Inflation?

Inflation \equiv

very early time period of accelerated expansion of the universe [Guth, Linde, Starobinsky, Steinhardt, Mukhanov, ... '80s]

What is Inflation?

Inflation \equiv

very early time period of accelerated expansion of the universe [Guth, Linde, Starobinsky, Steinhardt, Mukhanov, ... '80s]

Described by scalar inflaton field ϕ with certain potential $V(\phi)$.

Motivation from Inflation

Initially [BICEP2 '14] observed a large tensor-to-scalar ratio: r = 0.2.

Lyth bound:
$$\frac{\Delta\phi}{M_{\rm Pl}} = O(1) \sqrt{\frac{r}{0.01}}$$

- study large-field inflation $(\Delta \phi > M_{\rm Pl})$
- ▶ recent data from [Planck '15]: r < 0.11 → large-field inflation not yet ruled out!

Motivation from Inflation

Initially [BICEP2 '14] observed a large tensor-to-scalar ratio: r = 0.2.

Lyth bound:
$$\frac{\Delta\phi}{M_{\rm Pl}} = O(1) \sqrt{\frac{r}{0.01}}$$

- study large-field inflation $(\Delta \phi > M_{\rm Pl})$
- ▶ recent data from [Planck '15]: r < 0.11 → large-field inflation not yet ruled out!

 \implies axions with shift symmetry

Motivation from Inflation

Initially [BICEP2 '14] observed a large tensor-to-scalar ratio: r = 0.2.

Lyth bound:
$$\frac{\Delta\phi}{M_{\rm Pl}} = O(1) \sqrt{\frac{r}{0.01}}$$

- study large-field inflation $(\Delta \phi > M_{\rm Pl})$
- ▶ recent data from [Planck '15]: r < 0.11 → large-field inflation not yet ruled out!

 higher-order corrections to inflaton potential:

 \implies axions with shift symmetry

▶ consider interplay with moduli stabilization in string theory

Large-Field Inflation with Axions

▶ Natural Inflation with one axion ϕ

axion potential:
$$V(\phi) = V_0 \left(1 - \cos \frac{\phi}{f}\right) + \dots$$

 \longrightarrow inflation only for $f > M_{\rm Pl}$

 \longrightarrow Problem: $f < M_{\rm Pl}$ for controlled string compactification

- Aligned Inflation with two axions and $f_{\text{eff}} > M_{\text{Pl}}$
- N-flation with many axions and $f_{\text{eff}} > M_{\text{Pl}}$

Large-Field Inflation with Axions

▶ Natural Inflation with one axion ϕ

axion potential:
$$V(\phi) = V_0 \left(1 - \cos \frac{\phi}{f}\right) + \dots$$

 \longrightarrow inflation only for $f > M_{\rm Pl}$

 \longrightarrow Problem: $f < M_{\rm Pl}$ for controlled string compactification

- Aligned Inflation with two axions and $f_{\rm eff} > M_{\rm Pl}$
- N-flation with many axions and $f_{\rm eff} > M_{\rm Pl}$

Our approach:

Need: axion that is parametrically lighter than all other moduli

Motivation from String Phenomenology

Important task:

'Fluxes' generate scalar potential stabilizing moduli at the minima.

Motivation from String Phenomenology

Important task:

'Fluxes' generate scalar potential stabilizing moduli at the minima.

Idea:

- 1. generate scalar potential stabilizing all moduli except one axionic moduli
- 2. add new fluxes to stabilize the unfixed axion, such that it is parametrically lighter than all other moduli
- 3. realize axion monodromy inflation

Motivation from String Phenomenology

Important task:

'Fluxes' generate scalar potential stabilizing moduli at the minima.

Idea:

7 No-Go

Theorem:

- 1. generate scalar potential stabilizing all moduli except one axionic moduli
- 2. add new fluxes to stabilize the unfixed axion, such that it is parametrically lighter than all other moduli
- 3. realize axion monodromy inflation

There is no supersymmetric vacuum with stabilized non-tachyonic moduli and unfixed axions! [Conlon '07]

Objective

Requirements for realizing single-field F-term axion monodromy inflation in the context of moduli stabilization:

- ▶ vacua: non-supersymmetric + tachyon-free
- \blacktriangleright all saxionic moduli stabilized with one axion Θ enabling inflation
- ▶ controllable mass hierarchies

 $M_{\rm Pl} > M_{\rm s} > M_{\rm KK} > M_{\rm mod} > H_{\rm inf} > M_{\Theta}$

Contents

Introduction

What is String Phenomenology? What is Inflation? Motivation

Theoretical Framework

Moduli Space Fluxes and Moduli Stabilization Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario

A simple Model Axion Monodromy Inflation

Conclusion and Outlook

Moduli Space

 \longrightarrow Correspond to massless fields in 4d

Moduli Space

 \longrightarrow Correspond to massless fields in 4d

Moduli of type IIB orientifold compactifications [Grimm '04]:

modulus	name	
S = s + ic	axio-dilaton	
$U^i = v^i + iu^i$	complex structure	\rightarrow shape deformations
$T_{\alpha} = \tau_{\alpha} + i\rho_{\alpha} + \dots$	Kähler	\rightarrow size deformations
$G^a = S b^a + i c^a$	axionic odd	

Moduli space described by Kähler manifold together with a Kähler potential.

Fluxes and Moduli Stabilization

Type IIB superstring theory in 10d contains the 2-forms B_2 and C_2 .

Flux \equiv field strength with non-trivial vacuum expectation value

• combine the 3-form fluxes $H = \langle dB_2 \rangle$ and $\mathfrak{F} = \langle dC_2 \rangle$:

$$G_3 = \mathfrak{F} - iSH$$

• fluxes are quantized and can be expanded in $\tilde{\mathfrak{f}}^{\Lambda}$, \mathfrak{f}_{Λ} , \tilde{h}^{Λ} , $h_{\Lambda} \in \mathbb{Z}$

Fluxes and Moduli Stabilization

Type IIB superstring theory in 10d contains the 2-forms B_2 and C_2 .

Flux \equiv field strength with non-trivial vacuum expectation value

• combine the 3-form fluxes $H = \langle dB_2 \rangle$ and $\mathfrak{F} = \langle dC_2 \rangle$:

$$G_3 = \mathfrak{F} - iSH$$

• fluxes are quantized and can be expanded in $\tilde{\mathfrak{f}}^{\Lambda}$, \mathfrak{f}_{Λ} , \tilde{h}^{Λ} , $h_{\Lambda} \in \mathbb{Z}$

Fluxes generate (F-term) scalar potential fixing the moduli vevs and thereby giving a large mass to the moduli:

$$V_F = \frac{M_{\rm Pl}^4}{4\pi} e^K \left(K^{I\bar{J}} D_I W D_{\bar{J}} \overline{W} - 3 |W|^2 \right)$$

with Kähler potential K and Gukov-Vafa-Witten superpotential W.

 \longrightarrow Moduli Stabilization

Geometric and Non-Geometric Fluxes

New fluxes from string dualities:

T-duality:

Compactification on T-dual circles yields the same physics!

Geometric and Non-Geometric Fluxes

New fluxes from string dualities:

T-duality:

Compactification on T-dual circles yields the same physics!

Apply to flux compactification

[Grana, Louis, Waldram '06; Benmachiche, Grimm '06; Wecht '07; Shelton, Taylor, Wecht '07]:

Contents

Introduction

What is String Phenomenology? What is Inflation? Motivation

Theoretical Framework

Moduli Space Fluxes and Moduli Stabilization Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario

A simple Model Axion Monodromy Inflation

Conclusion and Outlook

See [Blumenhagen, Font, Fuchs, Herschmann, Plauschinn, Sekiguchi, Wolf '15]

A simple example $(q \in \mathbb{Z}$ denotes non-geometric flux): Superpotential with 3 fluxes turned on:

$$W = i\tilde{\mathfrak{f}} + ihS + iqT$$

Kähler potential of an isotropic torus T^6 with frozen complex structure moduli:

$$K = -3\log(T + \overline{T}) - \log(S + \overline{S})$$

See [Blumenhagen, Font, Fuchs, Herschmann, Plauschinn, Sekiguchi, Wolf '15]

A simple example $(q \in \mathbb{Z}$ denotes non-geometric flux): Superpotential with 3 fluxes turned on:

$$W = i\tilde{\mathfrak{f}} + ihS + iqT$$

Kähler potential of an isotropic torus T^6 with frozen complex structure moduli:

$$K = -3\log(T + \overline{T}) - \log(S + \overline{S})$$

Scalar potential generated by fluxes:

$$V = \frac{M_{\rm Pl}^4}{4\pi \cdot 2^4} \left[\frac{(hs - \tilde{\mathfrak{f}})^2}{s\tau^3} - \frac{6hqs + 2q\tilde{\mathfrak{f}}}{s\tau^2} - \frac{5q^2}{3s\tau} + \frac{1}{s\tau^3} \left(hc + q\rho\right)^2 \right]$$

 \implies orthogonal combination of $\theta = hc + q\rho$ is not stabilized!

Extrema of the scalar potential:

solution	(s, au, heta)	non-susy	tachyon-free	Λ
1	$(-\frac{\widetilde{\mathfrak{f}}}{2h},-\frac{3\widetilde{\mathfrak{f}}}{2q},0)$	no	no	AdS
2	$(rac{ ilde{\mathfrak{f}}}{8h},rac{3 ilde{\mathfrak{f}}}{8q},0)$	\checkmark	no	AdS
3	$(-rac{ ilde{f}}{h},-rac{6 ilde{f}}{5q},0)$	\checkmark	\checkmark	AdS

Note: uplift to dS space needed!

▶ mass eigenvalues of moduli:

$$M_{\text{mod},i}^2 = \mu_i \frac{hq^3}{\tilde{f}^2} \frac{M_{\text{Pl}}^2}{4\pi \cdot 2^4} \quad \text{with} \quad \mu_i \approx (6.2, 1.7; 3.4, 0)$$

 \rightarrow the massless state is the axionic combination $qc - h\rho$ \rightarrow massive states are parametrically of the same mass

▶ mass eigenvalues of moduli:

$$M_{\text{mod},i}^2 = \mu_i \frac{hq^3}{\tilde{\mathfrak{f}}^2} \frac{M_{\text{Pl}}^2}{4\pi \cdot 2^4} \quad \text{with} \quad \mu_i \approx (6.2, 1.7; 3.4, 0)$$

 \rightarrow the massless state is the axionic combination $qc - h\rho$ \rightarrow massive states are parametrically of the same mass

► gravitino mass like moduli masses with $\mu_{\frac{3}{2}} \approx 0.833$ \longrightarrow high-scale susy breaking

▶ mass eigenvalues of moduli:

$$M_{\text{mod},i}^2 = \mu_i \frac{hq^3}{\tilde{\mathfrak{f}}^2} \frac{M_{\text{Pl}}^2}{4\pi \cdot 2^4} \quad \text{with} \quad \mu_i \approx (6.2, 1.7; 3.4, 0)$$

 \rightarrow the massless state is the axionic combination $qc - h\rho$ \rightarrow massive states are parametrically of the same mass

- ▶ gravitino mass like moduli masses with $\mu_{\frac{3}{2}} \approx 0.833$ → high-scale susy breaking
- \blacktriangleright Kähler moduli are stabilized by non-geometric Q-flux
- ► scaling with fluxes allows to control many properties of the vacua $(s,\tau \text{ in perturbative regime})$ \longrightarrow neglect string loop- and α' -corrections

- \blacktriangleright stabilize massless axion via $W_{\rm ax} = \lambda W + f_{\rm ax} \; \Delta W$
- ▶ realizes F-term axion monodromy inflation

- ► stabilize massless axion via $W_{ax} = \lambda W + f_{ax} \Delta W$
- ▶ realizes F-term axion monodromy inflation
- tensor-to-scalar ratio r (for fixed fluxes):

- ► stabilize massless axion via $W_{ax} = \lambda W + f_{ax} \Delta W$
- ▶ realizes F-term axion monodromy inflation
- tensor-to-scalar ratio r (for fixed fluxes):

► Problem: large $\lambda \Rightarrow M_{\text{KK}} \simeq M_{\text{mod}}$ small $\lambda \Rightarrow H_{\text{inf}} > M_{\text{mod}}$

Backreacted uplifted inflaton potential $V_{\text{back}}(\phi)$ of our simple model for a specific choice of λ and the fluxes:

[Blumenhagen, Font, Fuchs, Herschmann, Plauschinn '15]

Backreacted uplifted inflaton potential $V_{\text{back}}(\phi)$ of our simple model for a specific choice of λ and the fluxes:

[Blumenhagen, Font, Fuchs, Herschmann, Plauschinn '15]

interpolation between polynomial and Starobinsky-like inflation

Contents

Introduction

What is String Phenomenology? What is Inflation? Motivation

Theoretical Framework

Moduli Space Fluxes and Moduli Stabilization Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario

A simple Model Axion Monodromy Inflation

Conclusion and Outlook

Conclusion and Outlook

Conclusion:

- ► systematic analysis of non-susy, stable minima of the scalar potential generated by type IIB orientifolds on CY including non-geometric fluxes
- ▶ all moduli stabilized at tree-level
- ► F-term axion monodromy inflation in principle possible, but control of mass hierarchies is difficult

Conclusion and Outlook

Conclusion:

- ► systematic analysis of non-susy, stable minima of the scalar potential generated by type IIB orientifolds on CY including non-geometric fluxes
- ▶ all moduli stabilized at tree-level
- ► F-term axion monodromy inflation in principle possible, but control of mass hierarchies is difficult

Open question:

- ▶ multi-field inflation: trajectory and non-Gaussianity?
- ▶ dS vacua or dS uplift?
- ▶ uplift to full string theory?
- ▶ include some Kaluza-Klein and string states?

Thank you!

Generalizations

There exist various other scaling scenarios including

- \blacktriangleright complex structure moduli U
- \blacktriangleright axionic-odd moduliG
- ▶ more Kähler moduli
- \blacktriangleright geometric- and so-called *P*-fluxes

Interesting features:

- ▶ all moduli stabilized (except some axions)
- ▶ in most cases non-supersymmetric, tachyon-free minima
- ▶ in some cases new tachyons

 \longrightarrow uplift tachyonic Kähler moduli via D-term