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What is String Phenomenology?

String Theory:
• −→

I fundamental objects: strings instead of particles

I there are 5 superstring theories in 10d

String Phenomenology:

String Theory
in 10d

Compactification

−−−−−−−−−−−→ Standard Model
in 4d

Here: type IIB string theory with orientifold projection
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What is Inflation?

Inflation ≡
very early time period of
accelerated expansion of
the universe [Guth, Linde,

Starobinsky, Steinhardt,

Mukhanov, ... ’80s]

time

size of universe

now

inflation

Described by scalar inflaton field
φ with certain potential V (φ).
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Motivation from Inflation

Initially [BICEP2 ’14] observed a large tensor-to-scalar ratio: r = 0.2.

Lyth bound:
∆φ

MPl
= O(1)

√
r

0.01

I study large-field inflation (∆φ > MPl)

I recent data from [Planck ’15]: r < 0.11
−→ large-field inflation not yet ruled out!

I higher-order corrections to
inflaton potential:

=⇒ axions with shift symmetry

corrections

I consider interplay with moduli stabilization in string theory
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Large-Field Inflation with Axions

I Natural Inflation with one axion φ

axion potential: V (φ) = V0

(
1− cos

φ

f

)
+ . . .

−→ inflation only for f > MPl

−→ Problem: f < MPl for controlled string compactification

I Aligned Inflation with two axions and feff > MPl

I N-flation with many axions and feff > MPl

Our approach:

F-term axion monodromy inflation [Hebecker, Kraus, Witkowski ’14;

Blumenhagen, Plauschinn ’14; Marchesano, Shiu, Uranga ’14;]

−→ controlled breaking of the axion shift symmetry
−→ generate polynomial inflaton potential

Need: axion that is parametrically lighter than all other moduli
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Motivation from String Phenomenology

Important task:

Massless
’moduli’

fields from 10d

Moduli
−−−−−−−−−→

Stabilization

Very
heavy

fields in 4d

’Fluxes’ generate scalar potential stabilizing moduli at the minima.

Idea:

1. generate scalar potential stabilizing all moduli except one axionic
moduli

2. add new fluxes to stabilize the unfixed axion, such that it is
parametrically lighter than all other moduli

3. realize axion monodromy inflation

E No-Go
Theorem:

There is no supersymmetric vacuum with stabilized
non-tachyonic moduli and unfixed axions! [Conlon ’07]
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Objective

Requirements for realizing single-field F-term axion monodromy
inflation in the context of moduli stabilization:

I vacua: non-supersymmetric + tachyon-free

I all saxionic moduli stabilized with one axion Θ enabling
inflation

I controllable mass hierarchies

MPl > Ms > MKK > Mmod > Hinf > MΘ
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Moduli Space

Moduli ≡ metric deformations of compactified space (CY)
preserving CY properties

−→ Correspond to massless fields in 4d

Moduli of type IIB orientifold compactifications [Grimm ’04]:

modulus name

S = s+ ic axio-dilaton

U i = vi + iui complex structure → shape deformations

Tα = τα + iρα + . . . Kähler → size deformations

Ga= Sba + ica axionic odd

Moduli space described by Kähler manifold together with a Kähler
potential.
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Fluxes and Moduli Stabilization

Type IIB superstring theory in 10d contains the 2-forms B2 and C2.

Flux ≡ field strength with non-trivial vacuum expectation value

I combine the 3-form fluxes H = 〈dB2〉 and F = 〈dC2〉:
G3 = F− iSH

I fluxes are quantized and can be expanded in f̃Λ, fΛ, h̃Λ, hΛ ∈ Z

Fluxes generate (F-term) scalar potential fixing the moduli vevs and
thereby giving a large mass to the moduli:

VF =
M4

Pl

4π
eK
(
KIJ̄DIWDJ̄W − 3

∣∣W ∣∣2)
with Kähler potential K and Gukov-Vafa-Witten superpotential W .

−→ Moduli Stabilization
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Geometric and Non-Geometric Fluxes

New fluxes from string dualities:

T-duality:

Compactification on
T-dual circles yields
the same physics!

R
T-duality 1

R

Apply to flux compactification
[Grana, Louis, Waldram ’06; Benmachiche, Grimm ’06; Wecht ’07; Shelton, Taylor,

Wecht ’07]:

Habc

Tc
←→ f cab

Tb
←→ Qbca

Ta
←→ Rabc

↓ ↓ ↓ ↓
NS-NS flux geometric non-geom. non-geom.
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Flux-Scaling Scenario
See [Blumenhagen, Font, Fuchs, Herschmann, Plauschinn, Sekiguchi, Wolf ’15]

A simple example (q ∈ Z denotes non-geometric flux):

Superpotential with 3 fluxes turned on:

W = i f̃ + ihS + iqT

Kähler potential of an isotropic torus T 6 with frozen complex structure
moduli:

K = −3 log(T + T )− log(S + S)

Scalar potential generated by fluxes:

V =
M4

Pl

4π · 24

[
(hs− f̃)2

sτ3
− 6hqs+ 2qf̃

sτ2
− 5q2

3sτ
+

1

sτ3
(hc+ qρ)2

]

=⇒ orthogonal combination of θ = hc+ qρ is not stabilized!
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Flux-Scaling Scenario

Extrema of the scalar potential:

solution (s, τ, θ) non-susy tachyon-free Λ

1 (− f̃
2h ,−

3̃f
2q , 0) no no AdS

2 ( f̃
8h ,

3̃f
8q , 0) X no AdS

3 (− f̃
h ,−

6̃f
5q , 0) X X AdS

Note: uplift to dS space needed!
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Flux-Scaling Scenario

I mass eigenvalues of moduli:

M2
mod,i = µi

hq3

f̃2
M2

Pl

4π · 24
with µi ≈ (6.2, 1.7 ; 3.4, 0)

−→ the massless state is the axionic combination qc− hρ
−→ massive states are parametrically of the same mass

I gravitino mass like moduli masses with µ 3
2
≈ 0.833

−→ high-scale susy breaking

I Kähler moduli are stabilized by non-geometric Q-flux

I scaling with fluxes allows to control many properties of the
vacua (s,τ in perturbative regime)
−→ neglect string loop- and α′-corrections
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Axion Monodromy Inflation

I stabilize massless axion via Wax = λW + fax ∆W

I realizes F-term axion monodromy inflation

I tensor-to-scalar ratio r (for fixed fluxes):

20 40 60 80 100 120 140

0.02

0.04

0.06

0.08

0.10

0.12

r

λ

I Problem: large λ ⇒ MKK 'Mmod

small λ ⇒ Hinf > Mmod
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Axion Monodromy Inflation

Backreacted uplifted inflaton potential Vback(φ) of our simple
model for a specific choice of λ and the fluxes:
[Blumenhagen, Font, Fuchs, Herschmann, Plauschinn ’15]
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φ
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r ∼ 0.133

Quadratic Inflation
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r ∼ 0.08

Linear Inflation
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0.0002
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V (φ)
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λ = 1
r ∼ 0.0015

Starobinsky
Inflation

I interpolation between polynomial and Starobinsky-like
inflation
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Conclusion and Outlook

Conclusion:

I systematic analysis of non-susy, stable minima of the scalar
potential generated by type IIB orientifolds on CY
including non-geometric fluxes

I all moduli stabilized at tree-level

I F-term axion monodromy inflation in principle possible,
but control of mass hierarchies is difficult

Open question:

I multi-field inflation: trajectory and non-Gaussianity?

I dS vacua or dS uplift?

I uplift to full string theory?

I include some Kaluza-Klein and string states?
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Thank you!
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Generalizations

There exist various other scaling scenarios including

I complex structure moduli U

I axionic-odd moduli G

I more Kähler moduli

I geometric- and so-called P -fluxes

Interesting features:

I all moduli stabilized (except some axions)

I in most cases non-supersymmetric, tachyon-free minima

I in some cases new tachyons
−→ uplift tachyonic Kähler moduli via D-term
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