String Theory and Cosmic Inflation

Florian Wolf

LMU and MPI for Physics, Munich

Ringberg Workshop on July 8, 2015
Contents

Introduction
 What is String Phenomenology?
 What is Inflation?
 Motivation

Theoretical Framework
 Moduli Space
 Fluxes and Moduli Stabilization
 Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario
 A simple Model
 Axion Monodromy Inflation

Conclusion and Outlook
Contents

Introduction
 What is String Phenomenology?
 What is Inflation?
 Motivation

Theoretical Framework
 Moduli Space
 Fluxes and Moduli Stabilization
 Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario
 A simple Model
 Axion Monodromy Inflation

Conclusion and Outlook
What is String Phenomenology?

String Theory:

- fundamental objects: strings instead of particles
- there are 5 superstring theories in 10d
What is String Phenomenology?

String Theory:

- fundamental objects: strings instead of particles
- there are 5 superstring theories in 10d

String Phenomenology:

String Theory in 10d \[\rightarrow\] Compactification \[\rightarrow\] Standard Model in 4d
What is String Phenomenology?

String Theory:
- fundamental objects: strings instead of particles
- there are 5 superstring theories in 10d

String Phenomenology:

String Theory in 10d \[\rightarrow\] Compactification \[\rightarrow\] Standard Model in 4d

Here: type IIB string theory with orientifold projection
What is Inflation?

Inflation ≡

very early time period of accelerated expansion of the universe [Guth, Linde, Starobinsky, Steinhardt, Mukhanov, ... ’80s]
What is Inflation?

Inflation \equiv very early time period of accelerated expansion of the universe [Guth, Linde, Starobinsky, Steinhardt, Mukhanov, ... '80s]

Described by scalar inflaton field ϕ with certain potential $V(\phi)$.
Motivation from Inflation

Initially [BICEP2 '14] observed a large tensor-to-scalar ratio: \(r = 0.2 \).

Lyth bound: \(\frac{\Delta \phi}{M_{Pl}} = O(1) \sqrt{\frac{r}{0.01}} \)

- study large-field inflation \((\Delta \phi > M_{Pl})\)
- recent data from [Planck '15]: \(r < 0.11 \)
 \(\rightarrow \) large-field inflation not yet ruled out!
Motivation from Inflation

Initially [BICEP2 ’14] observed a large tensor-to-scalar ratio: \(r = 0.2 \).

\[
\frac{\Delta \phi}{M_{Pl}} = O(1) \sqrt{\frac{r}{0.01}}
\]

- study large-field inflation \((\Delta \phi > M_{Pl})\)
- recent data from [Planck ’15]: \(r < 0.11 \)
 \(\rightarrow \) large-field inflation not yet ruled out!

- higher-order corrections to inflaton potential:
 \(\rightarrow \) axions with shift symmetry
Motivation from Inflation

Initially [BICEP2 ’14] observed a large tensor-to-scalar ratio: \(r = 0.2 \).

\[
\frac{\Delta \phi}{M_{\text{Pl}}} = O(1) \sqrt{\frac{r}{0.01}}
\]

- study large-field inflation (\(\Delta \phi > M_{\text{Pl}} \))
- recent data from [Planck ’15]: \(r < 0.11 \)
 \(\rightarrow \) large-field inflation not yet ruled out!

- higher-order corrections to inflaton potential:
 \(\Rightarrow \) axions with shift symmetry

- consider interplay with moduli stabilization in string theory
Large-Field Inflation with Axions

- **Natural Inflation** with one axion ϕ

 axion potential: \[V(\phi) = V_0 \left(1 - \cos \frac{\phi}{f} \right) + \ldots \]

 \rightarrow inflation only for $f > M_{\text{Pl}}$

 \rightarrow **Problem:** $f < M_{\text{Pl}}$ for controlled string compactification

- **Aligned Inflation** with two axions and $f_{\text{eff}} > M_{\text{Pl}}$

- **N-flation** with many axions and $f_{\text{eff}} > M_{\text{Pl}}
Large-Field Inflation with Axions

- **Natural Inflation** with one axion ϕ

 axion potential: \[V(\phi) = V_0 \left(1 - \cos \frac{\phi}{f} \right) + \ldots \]

 \rightarrow inflation only for $f > M_{\text{Pl}}$

 \rightarrow Problem: $f < M_{\text{Pl}}$ for controlled string compactification

- **Aligned Inflation** with two axions and $f_{\text{eff}} > M_{\text{Pl}}$

- **N-flation** with many axions and $f_{\text{eff}} > M_{\text{Pl}}$

Our approach:

F-term axion monodromy inflation [Hebecker, Kraus, Witkowski ’14; Blumenhagen, Plauschinn ’14; Marchesano, Shiu, Uranga ’14;]

\rightarrow controlled breaking of the axion shift symmetry

\rightarrow generate polynomial inflaton potential

Need: axion that is parametrically lighter than all other moduli
Motivation from String Phenomenology

Important task:

| Massless 'moduli' fields from 10d | Moduli Stabilization | Very heavy fields in 4d |

’Fluxes’ generate scalar potential stabilizing moduli at the minima.
Motivation from String Phenomenology

Important task:

| Massless ’moduli’ fields from 10d | Moduli Stabilization | Very heavy fields in 4d |

’Fluxes’ generate scalar potential stabilizing moduli at the minima.

Idea:

1. generate scalar potential stabilizing all moduli except one axionic moduli
2. add new fluxes to stabilize the unfixed axion, such that it is parametrically lighter than all other moduli
3. realize axion monodromy inflation

No-Go Theorem:
There is no supersymmetric vacuum with stabilized non-tachyonic moduli and unfixed axions!

[Conlon '07]
Motivation from String Phenomenology

Important task:

\[
\begin{array}{ccc}
\text{Massless} & \text{Moduli} & \text{Very} \\
\text{’moduli’} & \text{Stabilization} & \text{heavy} \\
\text{fields from 10d} & \text{fields in 4d}
\end{array}
\]

’Fluxes’ generate scalar potential stabilizing moduli at the minima.

Idea:

1. generate scalar potential stabilizing all moduli except one axionic moduli
2. add new fluxes to stabilize the unfixed axion, such that it is parametrically lighter than all other moduli
3. realize axion monodromy inflation

\[\text{No-Go Theorem:} \quad \text{There is no supersymmetric vacuum with stabilized non-tachyonic moduli and unfixed axions!} \quad \text{[Conlon ’07]}\]
Objective

Requirements for realizing single-field F-term axion monodromy inflation in the context of moduli stabilization:

- vacua: non-supersymmetric + tachyon-free
- all saxionic moduli stabilized with one axion Θ enabling inflation
- controllable mass hierarchies

$$M_{Pl} > M_s > M_{KK} > M_{mod} > H_{inf} > M_\Theta$$
Contents

Introduction
 What is String Phenomenology?
 What is Inflation?
 Motivation

Theoretical Framework
 Moduli Space
 Fluxes and Moduli Stabilization
 Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario
 A simple Model
 Axion Monodromy Inflation

Conclusion and Outlook
Moduli Space

\textbf{Moduli} \equiv metric deformations of compactified space (CY) preserving CY properties

\rightarrow Correspond to massless fields in 4d
Moduli Space

Moduli \equiv metric deformations of compactified space (CY) preserving CY properties

\rightarrow Correspond to massless fields in 4d

Moduli of type IIB orientifold compactifications [Grimm '04]:

<table>
<thead>
<tr>
<th>modulus</th>
<th>name</th>
<th>\rightarrow shape deformations</th>
<th>\rightarrow size deformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S = s + ic$</td>
<td>axio-dilaton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U^i = v^i + i u^i$</td>
<td>complex structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_\alpha = \tau_\alpha + i \rho_\alpha + \ldots$</td>
<td>Kähler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G^a = S b^a + i c^a$</td>
<td>axionic odd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moduli space described by Kähler manifold together with a Kähler potential.
Fluxes and Moduli Stabilization

Type IIB superstring theory in 10d contains the 2-forms B_2 and C_2.

Flux \equiv field strength with non-trivial vacuum expectation value

- combine the 3-form fluxes $H = \langle dB_2 \rangle$ and $\mathcal{F} = \langle dC_2 \rangle$:

 $$G_3 = \mathcal{F} - iSH$$

- fluxes are quantized and can be expanded in $\tilde{f}^\Lambda, f_\Lambda, \tilde{h}^\Lambda, h_\Lambda \in \mathbb{Z}$
Fluxes and Moduli Stabilization

Type IIB superstring theory in 10d contains the 2-forms B_2 and C_2.

Flux \equiv field strength with non-trivial vacuum expectation value

- combine the 3-form fluxes $H = \langle dB_2 \rangle$ and $\mathcal{F} = \langle dC_2 \rangle$:

 $$G_3 = \mathcal{F} - iSH$$

- fluxes are quantized and can be expanded in $\tilde{f}^\Lambda, f_\Lambda, \tilde{h}^\Lambda, h_\Lambda \in \mathbb{Z}$

Fluxes generate (F-term) scalar potential fixing the moduli vevs and thereby giving a large mass to the moduli:

$$V_F = \frac{M_{Pl}^4}{4\pi} e^K \left(K^{IJ} D_I W D_J \overline{W} - 3|W|^2 \right)$$

with Kähler potential K and Gukov-Vafa-Witten superpotential W.

\rightarrow Moduli Stabilization
New fluxes from string dualities:

T-duality:

Compactification on T-dual circles yields the same physics!
Geometric and Non-Geometric Fluxes

New fluxes from string dualities:

T-duality:

Compactification on T-dual circles yields the same physics!

\[
\begin{align*}
H_{abc} &\quad \leftrightarrow \quad T_c \\
\downarrow &\quad \leftrightarrow \quad \downarrow \\
\text{NS-NS flux} &\quad \text{geometric} \\
\end{align*}
\]

\[
\begin{align*}
f^{c}_{ab} &\quad \leftrightarrow \quad T_b \\
\downarrow &\quad \downarrow \\
\text{geometric} &\quad \text{non-geom.} \\
\end{align*}
\]

\[
\begin{align*}
Q^{bc}_{a} &\quad \leftrightarrow \quad T_a \\
\downarrow &\quad \downarrow \\
\text{non-geom.} &\quad \text{non-geom.}
\end{align*}
\]

Apply to flux compactification

[Grana, Louis, Waldram ’06; Benmachiche, Grimm ’06; Wecht ’07; Shelton, Taylor, Wecht ’07]:

\[
\frac{1}{R}
\]
Contents

Introduction
 What is String Phenomenology?
 What is Inflation?
 Motivation

Theoretical Framework
 Moduli Space
 Fluxes and Moduli Stabilization
 Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario
 A simple Model
 Axion Monodromy Inflation

Conclusion and Outlook
Flux-Scaling Scenario

See [Blumenhagen, Font, Fuchs, Herschmann, Plauschinn, Sekiguchi, Wolf ’15]

A simple example ($q \in \mathbb{Z}$ denotes non-geometric flux):

Superpotential with 3 fluxes turned on:

$$W = i\tilde{f} + i hS + iqT$$

Kähler potential of an isotropic torus T^6 with frozen complex structure moduli:

$$K = -3 \log(T + \overline{T}) - \log(S + \overline{S})$$
A simple example ($q \in \mathbb{Z}$ denotes non-geometric flux):

Superpotential with 3 fluxes turned on:

$$W = i\tilde{f} + i h S + i q T$$

Kähler potential of an isotropic torus T^6 with frozen complex structure moduli:

$$K = -3 \log(T + \overline{T}) - \log(S + \overline{S})$$

Scalar potential generated by fluxes:

$$V = \frac{M_{Pl}^4}{4\pi \cdot 2^4} \left[\frac{(hs - \tilde{f})^2}{s\tau^3} - \frac{6hq s + 2q\tilde{f}}{s\tau^2} - \frac{5q^2}{3s\tau} + \frac{1}{s\tau^3} (hc + q\rho)^2 \right]$$

\implies orthogonal combination of $\theta = hc + q\rho$ is not stabilized!
Extrema of the scalar potential:

<table>
<thead>
<tr>
<th>solution</th>
<th>(s, τ, θ)</th>
<th>non-susy</th>
<th>tachyon-free</th>
<th>Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(-\frac{\tilde{f}}{2h}, -\frac{3\tilde{f}}{2q}, 0)$</td>
<td>no</td>
<td>no</td>
<td>AdS</td>
</tr>
<tr>
<td>2</td>
<td>$(\frac{\tilde{f}}{8h}, \frac{3\tilde{f}}{8q}, 0)$</td>
<td>✓</td>
<td>no</td>
<td>AdS</td>
</tr>
<tr>
<td>3</td>
<td>$(-\frac{\tilde{f}}{h}, -\frac{6\tilde{f}}{5q}, 0)$</td>
<td>✓</td>
<td>✓</td>
<td>AdS</td>
</tr>
</tbody>
</table>

Note: uplift to dS space needed!
Flux-Scaling Scenario

- mass eigenvalues of moduli:

\[M_{\text{mod},i}^2 = \mu_i \frac{hq^3}{\tilde{f}^2} \frac{M_{\text{Pl}}^2}{4\pi \cdot 2^4} \quad \text{with} \quad \mu_i \approx (6.2, 1.7; 3.4, 0) \]

\[\rightarrow \] the massless state is the axionic combination \(qc - h\rho \)

\[\rightarrow \] massive states are parametrically of the same mass
Flux-Scaling Scenario

- mass eigenvalues of moduli:

\[M_{\text{mod},i}^2 = \mu_i \frac{h q^3}{f^2} \frac{M_{\text{Pl}}^2}{4\pi \cdot 2^4} \quad \text{with} \quad \mu_i \approx (6.2, 1.7; 3.4, 0) \]

\[\rightarrow \text{the massless state is the axionic combination } q c - h \rho \]
\[\rightarrow \text{massive states are parametrically of the same mass} \]

- gravitino mass like moduli masses with \(\mu_{\frac{3}{2}} \approx 0.833 \)
\[\rightarrow \text{high-scale susy breaking} \]
Flux-Scaling Scenario

- mass eigenvalues of moduli:

\[M_{\text{mod},i}^2 = \mu_i \frac{h q^3}{f^2} \frac{M_{\text{Pl}}^2}{4\pi \cdot 2^4} \quad \text{with} \quad \mu_i \approx (6.2, 1.7; 3.4, 0) \]

\[\rightarrow \text{the massless state is the axionic combination } q c - h \rho \]

\[\rightarrow \text{massive states are parametrically of the same mass} \]

- gravitino mass like moduli masses with \(\mu_\frac{3}{2} \approx 0.833 \)

\[\rightarrow \text{high-scale susy breaking} \]

- Kähler moduli are stabilized by non-geometric \(Q \)-flux

- scaling with fluxes allows to control many properties of the vacua (\(s, \tau \) in perturbative regime)

\[\rightarrow \text{neglect string loop- and } \alpha'\text{-corrections} \]
Axion Monodromy Inflation

- stabilize massless axion via $W_{ax} = \lambda W + f_{ax} \Delta W$
- realizes F-term axion monodromy inflation
Axion Monodromy Inflation

- stabilize massless axion via $W_{\text{ax}} = \lambda W + f_{\text{ax}} \Delta W$
- realizes F-term axion monodromy inflation
- tensor-to-scalar ratio r (for fixed fluxes):

![Graph showing the relationship between r and λ.]
Axion Monodromy Inflation

- stabilize massless axion via $W_{ax} = \lambda W + f_{ax} \Delta W$
- realizes F-term axion monodromy inflation
- tensor-to-scalar ratio r (for fixed fluxes):

![Graph showing the relationship between λ and r]

- **Problem:** large $\lambda \Rightarrow M_{KK} \simeq M_{\text{mod}}$
 small $\lambda \Rightarrow H_{\text{inf}} > M_{\text{mod}}$
Axion Monodromy Inflation

Backreacted uplifted inflaton potential $V_{\text{back}}(\phi)$ of our simple model for a specific choice of λ and the fluxes:

[Blumenhagen, Font, Fuchs, Herschmann, Plauschinn ’15]
Axion Monodromy Inflation

Backreacted uplifted inflaton potential $V_{\text{back}}(\phi)$ of our simple model for a specific choice of λ and the fluxes:

[Blumenhagen, Font, Fuchs, Herschmann, Plauschin n ’15]

\[\lambda = 60 \]
\[r \sim 0.133 \]
Quadratic Inflation

\[\lambda = 10 \]
\[r \sim 0.08 \]
Linear Inflation

\[\lambda = 1 \]
\[r \sim 0.0015 \]
Starobinsky Inflation

- interpolation between polynomial and Starobinsky-like inflation
Contents

Introduction
 What is String Phenomenology?
 What is Inflation?
 Motivation

Theoretical Framework
 Moduli Space
 Fluxes and Moduli Stabilization
 Geometric and Non-Geometric Fluxes

Flux-Scaling Scenario
 A simple Model
 Axion Monodromy Inflation

Conclusion and Outlook
Conclusion and Outlook

Conclusion:

- systematic analysis of non-susy, stable minima of the scalar potential generated by type IIB orientifolds on CY including non-geometric fluxes
- all moduli stabilized at tree-level
- F-term axion monodromy inflation in principle possible, but control of mass hierarchies is difficult

Open question:

- multi-field inflation: trajectory and non-Gaussianity?
- dS vacua or dS uplift?
- uplift to full string theory?
- include some Kaluza-Klein and string states?
Conclusion:

- systematic analysis of non-susy, stable minima of the scalar potential generated by type IIB orientifolds on CY including non-geometric fluxes
- all moduli stabilized at tree-level
- F-term axion monodromy inflation in principle possible, but control of mass hierarchies is difficult

Open question:

- multi-field inflation: trajectory and non-Gaussianity?
- dS vacua or dS uplift?
- uplift to full string theory?
- include some Kaluza-Klein and string states?
Thank you!
Generalizations

There exist various other scaling scenarios including

- complex structure moduli U
- axionic-odd moduli G
- more Kähler moduli
- geometric- and so-called P-fluxes

Interesting features:

- all moduli stabilized (except some axions)
- in most cases non-supersymmetric, tachyon-free minima
- in some cases new tachyons
 \rightarrow uplift tachyonic Kähler moduli via D-term