Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Miroslav Gabriel Max-Planck-Institute for Physics

Young Scientist Workshop 2015, Ringberg Castle

Outline

- 1. Introduction to Future Linear Colliders
- 2. Top Quark Mass Measurement at e+e- Colliders
 - Reconstruction of the Invariant Mass
 - From a Threshold Scan
- 3. Influence of the Luminosity Spectrum
- 4. Reconstruction of the Luminosity Spectrum
- 5. Summary

Future Linear Colliders

Requirements:

- Precision physics and complement LHC \rightarrow e+e- colliders
- Synchrotron radiation \rightarrow Linear Collider
- High Luminosity

Two proposed concepts for future linear e+e- machines:

- Both deliver luminosity > 10³⁴ cm⁻²s⁻¹
- Both realised in staged design
- Similiar detector concepts

Experimental conditions:

- Highly focused beams at IP "nano-beams" → Rise to Beamstrahlung
- Very low background, mostly from $\gamma\gamma \rightarrow$ hadrons
- Point particle collisions → precise initial & clean final states

International Linear Collider (ILC)

Future e⁺e⁻ machine with Japan as potential host:

- Superconducting cavities ~ 30 MV/m
- 250 GeV, 350 GeV, 500 GeV, upgrade to 1 TeV
- 50 km long

Compact Linear Collider (CLIC)

Future e⁺e⁻ machine at CERN with 350 GeV, 1.4 TeV and ultimately 3 TeV:

- Two-beam acceleration scheme
- 50 km long
- Normal conducting RF cavities ~ 100 MV/m
- 0.5 ns bunch crossing, nanometer beams \rightarrow most complicated luminosity spectrum

Timeline:

• CDR 2012, TDR ~ 2018, possible construction start 2025

Top Quarks at LC

Top quark from e⁺e⁻ -annihilation at future Linear Colliders:

- Dominant production mechanism: Top Pair Production
- Top decay almost exclusive into W + b
- Different decay modes:
 - Fully-hadronic (e+e-→ tt→qqbqqb); Br: 46%
 - Semi-leptonic (e+e-→tt→qqblvb); Br: 15% per lepton flavour
 - Fully-leptonic (e⁺e⁻→tt¯→lvblvb¯,); Br: 9%

Top Mass Measurements at LCs

Young Scientist

Workshop 2015

Top mass at future Linear Colliders from top pair production:

- Very low background (mainly $\gamma\gamma \rightarrow$ hadrons)
- Precise initial & clean final states

Two different measurement scenarios:

Direct Reconstruction of Invariant Mass (500 GeV):

- Mass in event generator "Pythia Mass" (Talk by Andre Hoang)
- Arbitrary energies above threshold
- High integrated luminosity

• Threshold Scan (350 GeV):

- Dedicated measurement needed
- Theoretically well understood (Talk by Andre Hoang)
- Best mass measurement at LC

M. Gabriel mgabriel@mpp.mpg.de

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Invariant Mass (500 GeV)

Direct Reconstruction of Invariant Mass at 500 GeV:

- Full Detector Simulation (signal, detector model & background) including NNLO QCD calculations
- Reconstruction via:
 - fully hadronic
 - semi leptonic, excluding τ channel

Focus on quality of selected events:

• Lepton Collider \Rightarrow Very low non-tt background:

S/B ~8.5 (12) for FH (SL) at 500 GeV

High reconstruction efficiency:
 34% (44%) for FH (SL) at 500 GeV

Theoretically not well defined

Invariant Mass (500 GeV)

EPJC 73: 2530 (2013)

Statistical Errors:

 $m_{t:} \sigma_{stat.} = 80 \text{ MeV} (FH + SL)$

$$\Gamma_t$$
: $\sigma_{stat.} = 220 \text{ MeV} (FH + SL)$

Systematic Errors:

- · exp. to be of similar order
- Not included: Theory Error

Top quark measurement at and above threshold at CLIC [EPJC 73: 2530 (2013)]

CLC

Threshold Scan in Theory

Top Threshold Scan:

- Measurement of top production cross section at the threshold
- Top mass affects rise of cross section
- Top mass extracted together with a_s
- α_s also from external input
 (LHC)
- Cross section connected to
 theoretically well defined mass
 scheme (here 1S)

Additional Access:

 Γ_t , Y_t , electroweak couplings

Precision from Threshold Scan

- Include of all relevant effects needed
- 100 fb⁻¹ total

Analysis Focus on Selection

Efficiency:

Gabrie

mgabriel@mpp.mpg.de

- Again fully hadronic and semi leptonic channels used
- S/B ~4.5 directly above threshold
- 70.2% efficiency including Br. (92% for selected decay modes)
- 99.8 % background rejection

Stat. uncertainty of Δm_t ~22 MeV

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Systematic Uncertainties

Measurements of the top mass will likely be limited by systematics.

Sources for Systematic Uncertainties on the Mass:

- Beam Energy ~ 30 MeV
- Selection efficiency and background rejection
- Theoretical uncertainties ~ 25-50 MeV
- Knowledge of the Luminosity Spectrum

Naiv study of the **impact** of accelerator specific **luminosity spectrum** on threshold scan:

Assume 20% width of the peak of the luminosity spectrum

Syst. uncertainty of $\Delta m_t \sim 75 \text{ MeV}$

Luminosity spectrum at CLIC 350 GeV has to be precisely know to estimate effect on threshold scan

Threshold Scan in Reality

Max-Planck-Institut für Physil

Theoretically calculated σ varies from measurement. Affected by:

- Initial State Radiation
- Luminosity Spectrum

Workshop 2015

Influence of Lumi Spectrum

Example of Low Beamstrahlung option for ILC:

<u>10% improvement in $\sigma_{stat.}$ vs. 50% less luminosity</u>

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Young Scientist Workshop 2015

Luminosity Spectrum and ISR

Physics effects:

- Initial State Radiation:
 - Theoretically well known
 - Leads to long tail
 - → Emission of photons

Accelerator effects:

- Beam Energy Spread:
 - Machine feature
 - Broadening of the peak
- Beam Strahlung
 - Strong focusing needed for high luminosity
 - Leads to long tail
 - Resulting fields affect e⁻
 - →Emission of photons

Young Scientist

Workshop 2015

Obtaining the Lumi Spectrum

Following the approach of André Sailer and Stéphane Poss presented in: Luminosity spectrum reconstruction at linear colliders for CLIC 3 TeV. [Eur. Phys. J. C (2014) 74:2833]

Luminosity spectrum can not be directly measured:

- Reconstruction from gauge process
- Large cross section process needed
 - → Large angle **Bhabha scattering**
- Observables are E_{electron} , E_{positron} and θ

e

M. Gabriel mgabriel@mpp.mpg.de

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Young Scientist Workshop 2015

 e^+

Reconstructing the Lumi Spectrum

The Goal: <u>Create minimal model to</u> <u>describe particle energy</u> <u>prior to collision and ISR</u>

Reconstruction of L(E_{1,}E₂)

in parameterised model:

- Get "real spectrum" from beam-beam simulation in Guinea Pig
- Extract energy and angular resolution from full detector sim
- Apply 3 stage reweighing fit to obtain model parameters

Model can successfully reconstruct real Lumi Spectrum

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Young Scientist Workshop 2015

The Result

Current status:

Full studies for 350 GeV are still ongoing

Goal:

Fully realistic reconstruction of the luminosity spectrum at 350 GeV

Summary

Future Linear e⁺e⁻ Colliders:

- Two proposed concepts
- High luminosity high precision machines

Measurement of Top Mass at CLIC:

- Reconstruction of the invariant mass @ 500 GeV
- Threshold Scan:
 - Statistical uncertainties of ~ 20 MeV
 - comparable experimental systematics
 - Mass measurement in theoretically well defined setting

Luminosity Spectrum potential major contribution to uncertainty:

- Reconstruction with parametrised model based on analysis of Bhabha Scattering
- Scaling of 3 TeV results to the top threshold region indicate syst. uncertainty Δmt ~ 10 MeV
- Full studies for 350 GeV CLIC ongoing

Backup

M. Gabriel mgabriel@mpp.mpg.de

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Young Scientist Workshop 2015

Mass Reconstruction Above Threshold

width)

- Slight differences in statistics due to cross section, changes in sensitivity due to steepness of threshold turn-on
- ▶ For 100 fb⁻¹, no polarization, 1D mass fit:

16 MeV → 18 MeV → 21 MeV (stat) FCCee CLIC ILC

350

345

355

√s [GeV]

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Young Scientist Workshop 2015

Bhabha Scattering

M. Gabriel mgabriel@mpp.mpg.de

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Young Scientist Workshop 2015

Identifying & Reconstructing Top Quarks

Strategy depends on targeted ttbar final state

Semi-leptonic:

- isolated lepton ID, momentum measurement
 - provides t / tbar identification
- missing energy measurement

Universal

- Flavor tagging:
 - b identification
 - b/c separation
- b-Jet energy measurement
- light Jet reconstruction & energy measurement

All-hadronic

• global hadronic energy reconstruction

Top Precision Physics at Linear Colliders PANIC, Hamburg, August 2014

t

Analysis Strategy

- Identify the type of top decay according to number of isolated leptons \bullet
 - all-hadronic (0 leptons), semi-leptonic (1 lepton), leptonic (>1 lepton) -> rejected
- Jet clustering (exclusive kt algorithm) according to classification: 6 or 4 jets
- Flavor-tagging: Identify the two most likely b-jet candidates \bullet
- W pairing: Jets / leptons into W bosons
 - Unique in the semi-leptonic case: 1 W from two light jets, 1 W from lepton & missing Energy
 - 3 possibilities (4 light jets) in all-hadronic case Pick combination with minimal deviation from nominal W mass
- Kinematic fit Use Energy/momentum conservation to constrain event \bullet
 - Performs the matching of W bosons an b-Jets to t candidates
 - Enforces equal t and anti-t mass: Only one mass measurement per event
 - Provides already good rejection on non-tt background
- Additional background rejection with likelihood method based on event variables (sphericity, b-tags, multiplicity, W masses, d_{cut}, top mass w/o kin fit)

The Sites

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

Future Linear Colliders

Two concepts e⁺e⁻-colliders at the energy frontier:

Compact Linear Collider:

- Three stages 350, 1400 and 3000 GeV
- Two-beam acceleration scheme
- Warm RF with ~100 MV/m
- Expected to reach maturity ~ 2018
- Focus of this talk

Both provide high luminosity (1 - 2 x) & optional beam polarization

M. Gabriel mgabriel@mpp.mpg.de

Impact of the Luminosity Spectrum on Top Mass Measurements at Linear Colliders

International Linear Collider:

SCRF with ~ 35 MV/m

TDR completed

250, 500 GeV, upgrade to 1 TeV

Top Precision Physics

Top mass measurement at LHC:

- Most precise measurement in template fits
- Actually measured: mass used in event generators for fit
- Connection to theoretically well defined mass scheme unclear, uncertainty O (GeV)

Top production at and above 350 GeV at future e⁺e⁻linear colliders:

Rich physics potential:

- Threshold Scan enables measurement of theoretically well defined top mass and other top properties
- Above threshold precision measurements of electroweak couplings:
 - Sensitivity to New Physics
- Precise initial & clean final states

Young Scientist Workshop 2015