# Fermi-LAT Detection of gamma-ray pulsars above 10 GeV

#### Pablo Saz Parkinson UCSC/HKU on behalf of the Fermi LAT Collaboration



The Future of Research on Cosmic Gamma Rays La Palma, Canary Islands, 27 August 2015





### What is a pulsar?



- Rapidly-spinning (0.1 Hz 700 Hz),
- highly-magnetised (up to IEI5 G),
- neutron star (R ~ 10 km, M ~ Sun)
- Discovered almost 50 years ago but still not completely understood
- > 2000 known pulsars
- Two "varieties": young and millisecond pulsars





# Gamma-ray pulsar population







Young, RS • Young, GS • Young, XS • MSP, RS • MSP, GS



#### **Gamma-ray Pulsar Population**





# Why are pulsars interesting?



- Extreme physical properties (e.g. density, B-field)
- Extreme 'timing' properties

e.g. The period of MSP J0437-4715 at 8:40 AM CST on 23 Aug 2012 was 5.7574518556687(1) ms and the first six digits will remain constant for the ~1000 years (Ransom 2013)



#### The multi-wavelength nature of pulsars X-Ray Gamma Ray Optical Radio





6

#### Credit: Thompson 2004



### Pulsars at VHE







### Pulsars at VHE



- The Crab pulsar has been detected at > 100 GeV (possibly up to TeV energies)
- The Vela pulsar has been detected by H.E.S.S. up to 70 GeV
- Emission mechanism?
- What about other pulsars?





### Modeling the Crab with SSC





Fig. 5.— Model spectra of phase-averaged pulsed emission components from primary electrons and pairs (as labeled) from the Crab pulsar, for magnetic inclination angle  $\alpha = 45^{\circ}$ and observer angle  $\zeta = 60^{\circ}$  and pair multiplicity  $M_{+} = 3 \times 10^{5}$ . The dashed lines are the SR and SSC spectra resulting from a power law extension to the cascade pair spectrum.



# Testing GR with pulsars





Credit: Aurore Simonnet

Search for a possible dispersion of electromagnetic radiation, as might be expected from quantum gravity:

$$c^2 p^2 = E^2 [1 + f(E/E_{QG})]$$

#### Kaaret 1999





#### EGRET (70 MeV - > 2 GeV) See also Otte 2011

# Pulsars above 10 GeV (EGRET)

- Thompson et al. 2004
- ~1500 photons > 10 GeV
- 187 within 1 deg. of a source
- 37 from 5 gamma-ray pulsars:
  - Crab: 10 (7 in peaks)
  - Vela: 4 (all in peaks)
  - Geminga: 10 (5 in peaks)



B1951+32

B1706-44





# LAT specifications



#### LAT Specifications & Performance

| 20 MeV - 300 GeV<br>> 8000 cm <sup>2</sup> | 20 MeV - 30 GeV<br>1500 cm <sup>2</sup>                                                        |
|--------------------------------------------|------------------------------------------------------------------------------------------------|
| > 8000 cm <sup>2</sup>                     | 1500 cm 2                                                                                      |
| 0.00                                       |                                                                                                |
| > 2 sr                                     | 0.5 sr                                                                                         |
| < 3.5° (100 MeV)<br>< 0.15° (>10 GeV)      | 5.8° (100 MeV)                                                                                 |
| < 10%                                      | 10%                                                                                            |
| < 100 µs                                   | 100 ms                                                                                         |
| < 0.5'                                     | 15'                                                                                            |
| < 6 x 10 -9 cm -2 s -1                     | ~ 10-7 cm-2 s-1                                                                                |
|                                            | < 3.5° (100 MeV)<br>< 0.15° (>10 GeV)<br>< 10%<br>< 100 µs<br>< 0.5'<br>< 6 x 10 -9 cm -2 s -1 |

<sup>1</sup> After background rejection

<sup>2</sup> Single photon, 68% containment, on-axis

- <sup>3</sup> 1-σ, on-axis
- <sup>4</sup> 1-σ radius, flux 10<sup>-7</sup> cm<sup>-2</sup> s<sup>-1</sup> (>100 MeV), high |b|

<sup>5</sup> > 100 MeV, at high |b|, for exposure of one-year all sky survey, photon spectral index -2

#### http://fermi.gsfc.nasa.gov/ssc/



### Fermi LAT Catalog of Sources Above 10 GeV (IFHL)







# The IFHL Catalog



- 36 Months, P7V6 Clean, E>10 GeV
- Locations, spectra, variability, associations
- 514 sources
  - 393 (76%) associated with AGN
  - 65 (13%) unassociated
  - 27 (5%) associated with pulsars -> how many identified (HPSR)?
  - Ackerman et al., ApJS 209, 34 (Dec 2013)







- 27 IFHL sources associated with pulsars
- 25 associated with 2PC pulsars (all except J2339-0533 and J1536-4948)
  - 5 EGRET pulsars
  - 7 young (non-recycled) radio-selected
  - 10 young gamma-selected
  - 3 gamma-ray MSPs

Q: Does the > 10 GeV emission come from the pulsar?

A: Test for pulsations using prior low-energy information



### The IFHL Catalog





Phase





# FHL gamma-ray pulsars (HPSR)



| 1FHL           | PSR                      | P<br>[ms] | l [deg] | b<br>[deg] | n <sub>10</sub> | P <sub>10</sub>      | n <sub>25</sub> | $P_{25}$              | Ref.           |
|----------------|--------------------------|-----------|---------|------------|-----------------|----------------------|-----------------|-----------------------|----------------|
| J0007.3+7303   | J0007+7303 <sup>#</sup>  | 316       | 119.7   | +10.5      | 179             | $< 2 \times 10^{-9}$ | 20              | $1.7 \times 10^{-3}$  | [1, 2, 3]      |
| J0205.7+6448   | J0205 + 6449             | 65.7      | 130.7   | +3.1       | 38              | > 0.05               | 12              | > 0.05                | [4]            |
| J0534.5 + 2201 | J0534+2200 <sup>†#</sup> | 33.6      | 184.6   | -5.8       | 674             | $6.3 \times 10^{-8}$ | 191             | $2.4 \times 10^{-2}$  | Crab [5, 6, 7] |
| J0614.0-3325   | J0614-3329               | 3.15      | 240.5   | -21.8      | 26              | $< 2 \times 10^{-9}$ | 3               | $2.0 \times 10^{-2}$  | [8]            |
| J0633.9+1746   | J0633+1746 <sup>#</sup>  | 237       | 195.1   | +4.3       | 260             | $< 2 \times 10^{-9}$ | 11              | $1.4 \times 10^{-5}$  | Geminga [9]    |
| J0835.3-4510   | J0835-4510 <sup>†#</sup> | 89.4      | 263.6   | -2.8       | 1005            | $< 2 \times 10^{-9}$ | 56              | $< 2 \times 10^{-9}$  | Vela [10, 11]  |
| J1022.6-5745   | J1023-5746               | 112       | 284.2   | -0.4       | 152             | > 0.05               | 46              | > 0.05                | [12]           |
| J1028.4-5819   | J1028-5819 <sup>#</sup>  | 91.4      | 285.1   | -0.5       | 164             | $< 2 \times 10^{-9}$ | 41              | $4.0 \times 10^{-2}$  | [13]           |
| J1048.4-5832   | J1048-5832               | 124       | 287.4   | +0.6       | 85              | $9.7 \times 10^{-6}$ | 22              | $2.1 \times 10^{-2}$  | [14]           |
| J1112.5-6105   | J1112-6103               | 65.0      | 291.2   | -0.5       | 112             | > 0.05               | 28              | > 0.05                |                |
| J1231.2-1414   | J1231-1411               | 3.68      | 295.5   | +48.4      | 15              | $5.3 \times 10^{-7}$ | 4               | > 0.05                | [8]            |
| J1413.4-6205   | J1413-6205               | 110       | 312.4   | -0.7       | 278             | $4.4 \times 10^{-3}$ | 64              | $1.5 \times 10^{-2}$  | [12]           |
| J1418.6-6059   | J1418-6058               | 111       | 313.3   | +0.1       | 324             | > 0.05               | 72              | > 0.05                | [2]            |
| J1420.1-6047   | J1420-6048               | 68.2      | 313.5   | +0.2       | 278             | > 0.05               | 65              | > 0.05                | [15]           |
| J1514.3-4945   | J1514-4946               | 3.58      | 325.2   | +6.8       | 24              | $1.7 \times 10^{-4}$ | 3               | > 0.05                | [16]           |
| J1536.4-4951   | J1536-4948               | 3.08      | 328.2   | +4.8       |                 |                      |                 |                       | Not in 2PC     |
| J1620.7-4928   | J1620-4927               | 172       | 333.9   | +0.4       | 297             | $9.4 \times 10^{-3}$ | 77              | > 0.05                | [17]           |
| J1709.7-4429   | J1709-4429#              | 103       | 343.1   | -2.7       | 272             | $< 2 \times 10^{-9}$ | 25              | > 0.05                | [18]           |
| J1809.8-2329   | J1809-2332               | 147       | 7.4     | -2.0       | 119             | $< 2 \times 10^{-9}$ | 18              | $4.3 \times 10^{-2}$  | [2]            |
| J1836.4+5925   | J1836+5925               | 173       | 88.9    | +25.0      | 36              | $1.0 \times 10^{-4}$ | 2               | $1.0 \times 10^{-2*}$ | [2, 19]        |
| J1907.7+0600   | J1907+0602#              | 107       | 40.2    | -0.9       | 158             | $2.3 \times 10^{-4}$ | 36              | > 0.05                | [2, 20, 21]    |
| J1953.3 + 3251 | J1952+3252               | 39.5      | 68.8    | +2.8       | 48              | $1.2 \times 10^{-5}$ | 7               | > 0.05                | [18]           |
| J1958.6 + 2845 | J1958+2846               | 290       | 65.9    | -0.4       | 64              | $1.0 \times 10^{-2}$ | 11              | > 0.05                | [2]            |
| J2021.0 + 3651 | J2021+3651#              | 104       | 75.2    | +0.1       | 107             | $< 2 \times 10^{-9}$ | 20              | $7.6 \times 10^{-3}$  | [21, 22, 23]   |
| J2032.1+4125   | J2032+4127#              | 143       | 80.2    | +1.0       | 210             | $5.6 \times 10^{-8}$ | 54              | > 0.05                | [2, 24]        |
| J2229.0+6114   | J2229+6114 <sup>#</sup>  | 51.6      | 106.7   | +3.0       | 86              | $< 2 \times 10^{-9}$ | 14              | $6.1 \times 10^{-3}$  | [14, 25]       |
| J2339.8-0530   | J2339-0533               | 2.88      | 81.1    | -62.4      |                 |                      |                 |                       | Not in 2PC     |



Pulsars above 25 GeV



#### Table 11

Fermi-LAT y-Ray Pulsars Detected above 25 GeV

| PSR                      | <b>E</b> max | E <sup>detected</sup><br>max | $\Phi_{\gamma \max}$ | Notes   |
|--------------------------|--------------|------------------------------|----------------------|---------|
| J0007+7303 <sup>#</sup>  | 28           | 788                          | 0.64                 |         |
| J0534+2200 <sup>†#</sup> | 26           | 784                          | 0.33                 | Crab    |
| J0614-3329               | 63           | 63.6                         | 0.68                 |         |
| J0633+1746#              | 33           | 52.7                         | 0.05                 | Geminga |
| J0835-4510 <sup>†#</sup> | 37           | 752                          | 0.28                 | Vela    |
| J1028-5819               | 27           | 386                          | 0.49                 |         |
| J1048-5832               | 35           | 201                          | 0.28                 |         |
| J1413-6205               | 29           | 331                          | 0.28                 |         |
| J1809-2332               | 26           | 159                          | 0.07                 |         |
| J1836+5925               | 26           | 97.9                         | 0.05                 |         |
| J1954+2836               | 62           | 95.7                         | 0.57                 |         |
| J2021+3651#              | 26           | 113                          | 0.64                 |         |
| J2229+6114 <sup>#</sup>  | 31           | 169                          | 0.17                 |         |





### Vela above 50 GeV





Figure 3. (a) Weighted light curve in 50-300 GeV. (b) Folded light curve in 30-50 GeV with a 0°.4 radius aperture. The black histogram represents the observed counts, the red line represents the Bayesian block decomposition. Folded light curves in (c) 10-100 GeV, (d) 1-10 GeV and (e) 0.1-1 GeV with a 1° radius aperture.

















Fig. 1.— Adaptively smoothed count map in the 50 GeV-2 TeV band represented in Galactic coordinates and Hammer-Aitoff projection. The image has been smoothed with a Gaussian kernel whose size was varied to achieve a minimum signal-to-noise ratio under the kernel of 2. The color scale is logarithmic and the units are counts per  $(0.1 \text{ deg})^2$ .



### **2FHL Source Classes**



2FHL Source Classes

| Description                                          | Associated     |        |  |
|------------------------------------------------------|----------------|--------|--|
|                                                      | Designator     | Number |  |
| Pulsar                                               | psr            | 1      |  |
| Pulsar wind nebula                                   | pwn            | 14     |  |
| Supernova remnant                                    | snr            | 16     |  |
| Supernova remnant / Pulsar wind nebula               | $_{\rm spp}$   | 4      |  |
| High-mass binary                                     | $\mathbf{hmb}$ | 2      |  |
| Binary                                               | bin            | 1      |  |
| Star-forming region                                  | sfr            | 1      |  |
| BL Lac type of blazar                                | bll            | 180    |  |
| BL Lac type of blazar with prominent galaxy emission | bll-g          | 13     |  |
| FSRQ type of blazar                                  | fsrq           | 10     |  |
| Non-blazar active galaxy                             | agn            | 2      |  |
| Radio galaxy                                         | rdg            | 4      |  |
| Radio galaxy / BL Lac                                | rdg/bll        | 2      |  |
| Blazar candidate of uncertain type I                 | bcu I          | 7      |  |
| Blazar candidate of uncertain type II                | bcu II         | 34     |  |
| Blazar candidate of uncertain type III               | bcu III        | 19     |  |
| Normal galaxy (or part)                              | gal            | 1      |  |
| Galaxy cluster                                       | galclu         | 1      |  |
| Total associated                                     |                | 312    |  |
| Unassociated                                         |                | 48     |  |
| Total in 2FHL                                        |                | 360    |  |



### SNR/PWN in 2FHL







### What next with the LAT?



|                            | 1FHL     | Now                              |
|----------------------------|----------|----------------------------------|
| Data span                  | 3 years  | ~ 7 years                        |
| LAT IRFs                   | Pass 7   | Pass 8                           |
| # Pulsars<br>investigated  | 39       | ~160                             |
| Dedicated PWN<br>treatment | No       | Yes                              |
| Lower Energy<br>Template   | >100 MeV | >100 MeV, >1<br>GeV, Other (TBD) |



# Summary



- Fermi has greatly improved our knowledge of gammarays sources in the 100 MeV-100 GeV energy range
- 28 (12) LAT pulsars have been shown to emit pulsations at >10 (25) GeV
- Recent improvements in Fermi (Pass 8) with the addition of more than twice the amount of data will improve these results significantly
- Ground-based instruments (HESS, MAGIC, VERITAS, HAWC, CTA) are needed to further investigate pulsar emission above 100 GeV





#### Extra Slides



### LIV with pulsars



At small energies  $E << E_{QG}$  a series expansion of the dispersion relation should be applicable (Amelino-Camelia et al. 1998)

$$c^2 p^2 = E^2 [1 + \xi E / E_{QG} + \vartheta (E^2 / E_{QG}^2)]$$

 Search for a difference in travel time between photons of different energies:

 $\Delta t = L\Delta E / E_{QG}$ 

• We can turn this around, to determine the energy scale which we probe:

$$E_{QG} = \frac{L}{c} \frac{E_h - E_l}{\Delta t}$$

Note that for the quadratic term of the expansion, we obtain the following:

# The Large Area Telescope (LAT)



#### Anti-coincidence

Detector



Atwood et al., ApJ, 697, 1071 (2009)

Tracker Calorimeter