IT'S A VIOLENT VHE SKY...

A transit IACT to survey half of the VHE γray sky

J. Cortina, R. López-Coto, A. Moralejo (*IFAE Barcelona*)

MACHETE: A transit IACT to survey half of the VHE γ -ray sky

J. Cortina, R. López-Coto, A. Moralejo (IFAE Barcelona)

The Future of Research on Cosmic Gamma Rays La Palma 2015

IACTs are pointing instruments

MACHETE: a transit wide FOV IACT

The Future of Research on Cosmic Gamma Rays

Surveys with IACTs

- Say we need 10h to achieve enough sensitivity. We would need 10000 hours to scan the whole sky: telescopes need ~10 years to collect them.
- It is achievable but there are many other ideas to exploit an IACT for 10 years.
- As a result only a survey of the galactic plane has been performed (HESS, about 1000 deg²). Adding all pointing observations, we may have explored ~5% of the sky.
- What is in the other 95% of the sky? Active galaxies, off-plane galactic sources, dark matter clumps? Important to make a Full sky survey in VHE.
- What it's more, the VHE sky is changing all the time, so we would need to repeat the survey after a few years and we'd very much like to **monitor it every night**.

E_{γ} <100 GeV: space based surveys

• Very small collection area for >100 GeV observations, i.e. limited sensitivity to VHE transients.

• Angular resolution ~0.1° i.e. as good as IACTs.

• No obvious replacement for Fermi-LAT in the future (>2020?)

The Future of Research on Cosmic Gamma Rays

E_{γ} >1 TeV: surveys with non-IACTs

<image>

- ~10-15x more sensitive than Milagro.
- Angular resolution ~1°.
- Hadron rejection poorer than IACTs, i.e. worse sensitivity
- Energy range: >1 TeV.
- Larger: HiSCORE in Russia, LHASSO in China, under construction, but targeting higher energies

How to build a Schmidt:

STEP 1. Start with a **spherical mirror**. It has aberrations but only spherical aberrations.

STEP 2. Make the **focal plane spherical**, with center at center of mirror. All incident directions become equivalent.

STEP 3. For a spherical mirror as rays hit further and further away from optical axis they get more a more defocused.

STEP 3. ... adding a "stop" reduces the aberration.

STEP 3. Considering all incident directions: where shall we place **the "stop"**?

At the mirror's center of curvature, so that all directions remain equivalent.

STEP 4. Add the Schmidt **corrector plate** at the stop. That eliminates spherical aberrations.

Well, let's build a "Schmidt IACT"! This has been proposed: Mirzoyan & Andersen, ApP **31** (2009) 1, with D=7m mirror, FOV Ø=15°, **f/D=0.8**, PSF RMS=1 arcmin.

Unfortunately:

- It has chromatic aberration (lens!)
- For the corrector plate they propose a 7m ø PMMA Fresnel lense of 17mm max thickness: challenging and probably expensive.
- Bulky instrument: 3 large elements (mirror, camera and corrector plate).

We live with the aberration: after all IACTs don't need excellent optics

Implement it placing a "light concentrator" on each of the pixels

No limit to field of view!?!

Since there is no physical stop the aperture does not decrease as we go further and further off-axis. So we can go to any off-axis angle...!?

No, there's a limit

A limit is set by the **shadowing of the camera** on the mirror.

Here is an example: D=12 m, f=17 m (f/D=1.42), circular camera

FOV ø (°)	S _{cam} (m²)	On-axis shadowi ng
5	1.77	1.6%
10	7.1	6.3%
15	16.0	14%
20	28.4	25%
25	44.4	40%

Solution: a non-circular camera

MACHETE= Meridian Atmospheric CHErenkov Telescope

Field of view

MACHETE: a transit wide FOV IACT

The Future of Research on Cosmic Gamma Rays

Don't move the telescope! Move the sky!

MACHETE: a transit wide FOV IACT

The Future of Research on Cosmic Gamma Rays

MACHETE = stereo array

Optical parameters

We've optimized some of these parameters using the ray-tracing program ZEMAX and used it to calculate the PSF (which btw is not gaussian)

	D=12m, f=17m, f/D=1.42
Plate scale	300 mm/deg
PSF r _{80%}	0.06° for whole FOV (MAGIC: 0.07°on-axis —0.16° at 1.8° off-axis, MST: 0.02°on-axis —0.07° at 2.8° off-axis)
Ø _{pix} >~ 2r _{80%}	0.16° = 48 mm
Total mirror surface	619 m ²
Mirror surface viewed by a pixel	113 m ²
Camera FOV	$60^{\circ} \times 5^{\circ} = 300 \text{ deg}^2$
Number pixels	~15 000
On-axis shadowing	16%
Δt_{max}	3 ns

Camera

The Future of Research on Cosmic Gamma Rays

Photosensors

•We have not selected a specific photosensor.

•PMTs are standard in IACTs and reach QE>~40% these days, but they are expensive (~300 € / unit) and bulky.

•Silicon PMs (aka G-APDs) deliver even higher QE, would cost ~200 € for a MACHETE pixel (assuming 1 \$/mm²) and would allow smooth observations with strong Moon (important for such a telescope), but spectral response not optimal and unavailable for the necessary pixel size.

Readout

•Showers have a typical size $\sim <1^\circ$, so we only need to read out a small fraction of the camera ($2^\circ x 2^\circ = 256$ pixels?).

•A fast local trigger identifies those channels and selects a Region of Interest (RoI). We only need to digitize/record the RoI.

•A possible solution (R. Paoletti, INFN Pisa): install cheap digitizers (TARGET5) in all pixels, break up camera in tiles, digitize tile if local trigger, keep only digitized information if stereo trigger.

•Challenge: 9 kHz proton stereo trigger rate (but each CTA-SCT has 11k pixels and is designed for 10 kHz trigger rate).

Monte Carlo simulation

- We've made a full MC simulation of the instrument using the MAGIC MC and analysis software (thanks, MAGIC!!).
- We simulated a 4x4 deg² section of the camera and a section of the spherical mirror with estimated PSF (r_{80%}=0.08°, considering facet misalignment).
- We assumed basically the same performance of MAGIC for all optical (PSF...) and electronic elements (noise, sampling...), except for PMT QE, which we increased by 50% (consistent with available PMTs).

Sky accessible by MACHETE

- Every object in ~half of the sky drifts through the camera of MACHETE along a year.
- In one year we integrate ~15 hours for each of these objects.
- Objects in ~¼ sky spend about 20 minutes every night in the FOV of the telescopes.

Performance

Astrop. Physics, in print, and arXiv:1507.02532

Angular resolution: 0.1° and **spectral resolution**: 20-15% (standard IACT, much better than HAWC)

Performance

Astrop. Physics, in print, and arXiv:1507.02532

Angular resolution: 0.1° and **spectral resolution**: 20-15% (standard IACT, much better than HAWC)

Physics with MACHETE

- A survey of half of the sky:
 - New Active Galactic Nuclei (Fermi 2FHL: about 230 AGNs detected >50 GeV, most of them not detected by IACT yet).
 - New galactic sources, especially if built in the south.

... and the unknown:

- "Dark sources" = sources emitting only in VHE.
 - Hadronic AGNs
 - Dark matter clumps?
- New types of transients.
- Valuable archive: would provide years-long data sample for phenomena discovered in the future (periodicities, transients)
- Monitor bright VHE sources:
 - Unbiased light curves of AGN and galactic sources.
 - Establish unknown duty cycles (e.g. IC-310).
 - Trigger CTA and other telescopes.

Cost: very rough estimate

- We can use standard IACTs like CTA MSTs to reach the same performance. Is MACHETE cheaper?
- Good:
 - No need for steering mechanics. Hardly any moving parts: reduction in construction cost and cheaper maintenance.
 - Mirrors or camera can be heavier: assuming 1k€/m² for mirrors (M. Mariotti, M. Doro, INFN Padova), it's only 1.2 M€ for two telescopes.
- Bad:
 - 30000 pixels for two telescopes!
 - Number of pixels similar to CTA-SCT. Assuming similar readout, from SCT cost estimate we estimate 1.5 M€ for readout of two telescopes.
 - Significant cost of photosensors: 5.4 M€ for two telescopes assuming 1 \$/mm².
- All in all we estimate ~10 M€ capital cost for two telescopes.
- Compare to MSTs/SCTs: >3 times cheaper for same FOV.

Discussion/conclusions

- We have found a simple optical solution to build a very wide FOV IACT (300 deg² with PSF r_{80%}=0.06° for D=12m and f/D=1.42).
- Implemented as 2 meridian telescopes, it reaches 0.77% CU integral sensitivity for ~half of the sky in 5 years and 12% CU in a night.
- Very rough cost estimate: 10 M€ for two telescopes.
- Main physics goals: discovery through survey (serendipity!), trigger of transient VHE sources.

Thanks!

MACHETE: a transit wide FOV IACT

he Future of Research on Cosmic Gamma Rays

MACHETE: a transit wide FOV IACT

he Future of Research on Cosmic Gamma Rays

Can we make an IACT with a much wider FOV?

The most popular optics for IACTs are:

Can we make an IACT with a much wider FOV?

The most popular optics for IACTs are:

Can we make an IACT with a much wider FOV? MST:

- Pretty large FOV Ø=7°.
- Davis-Cotton mount with f=16 m, D=12 m (f/D=1.35).
- Pixel size=0.18°.
- PSF: r80%= 0.015° on-axis going up to 0.07° for offaxis=2.8°. Beyond that off-axis angle, PSF grows fast.

Detailed comparison to CTA

- MACHETE (stereo=2 telescopes): 10 M€ capital cost, 300 deg2.
- 1 MST: 2.2 M€ capital cost, 38 deg2 -> need to cover 8x larger FOV and stereo, so comparable cost is 35 M€
- 1 SCT: 2 M\$ capital cost, 50 deg2 -> need to cover 6x larger FOV and stereo, so comparable cost is 32 M\$