

AGILE Highlights

Carlotta Pittori, ASDC & OAR on behalf of the AGILE Collaboration

The Future of Research on Cosmic Gamma Rays

26 - 29 August 2015 La Palma -Canary Islands

The AGILE Payload: the most compact instrument for HE astrophysics Payload: ~100 kg, ~ 60 cm³ GRID gamma-ray imager (30 MeV - 30 GeV)(Pair conversion SI-**Tracker**)

SuperAGILE hard X-ray imager (18 - 60 keV)

MCAL Minicalorimeter (0.3 - 100 MeV)

ASI Mission with INFN, INAF e CIFS participation

April 23, 2007: Launch!

Baseline Equatorial orbit: 550 Km, < 3º inclination Orbital decay estimate after 8 years: Height < 400 Km on June 2017 (worst case)

AGILE Total Intensity Map (E > 100 MeV) Pointing + Spinning (up to April 2015)

(green circles: AGILE sources, first year of operations)

allo 1 a 1 20 ao 1 a 1 a

10 100

"The First AGILE-GRID Catalog of High Confidence Gamma-Ray Sources", C. Pittori et al., A&A 506, 2009 and "An updated list of AGILE bright γ-ray sources and their variability in pointing mode", F. Verrecchia et al., A&A 558, 2013

The First AGILE-GRID Catalog of High Confidence Gamma-Ray Sources

ASDC Data Explorer Tool

The new ASDC SED Builder

VO tools and TIME domain

ori (Logout) Fe	edback			-
Tutorial DA	TA EXPLORER		and)
er Data Ex	isting SEDs		All Science Date (2
rrent SED Se	arch and build new !	SEDs	\bigcirc	
Load Data	Show Data			
Redshift: 🞯	0.0	Frame: Observe	d +	
X Axis: Free Plot Type: Def	ault -	Y Axis: nuFnu (Update Plot	erg/cm2/s) <u> </u>	
X Axis: Free Plot Type: Definition	ault -	Y Axis: nuFnu (Update Plot Energy Filtering	erg/cm2/s) <u> </u>	
X Axis: Free Plot Type: Definitions	ault - Time Filtering Templates	Y Axis: nuFnu (Update Plot Energy Filtering Instr Sensitivity	erg/cm2/s) • Models Plot options	
X Axis: Free Plot Type: Definition Input Data Fit Functions Existing SEDs	ault • Time Filtering Templates Export	Y Axis: nuFnu (Update Plot Energy Filtering Instr Sensitivity VO Tools	Models Plot options	
X Axis: Free Plot Type: Definition Input Data Fit Functions Existing SEDs SDC Catalogs	ault Time Filtering Templates Export	Y Axis: nuFnu (Update Plot Energy Filtering Instr Sensitivity VO Tools	Models Plot options	
X Axis: Free Plot Type: Definitions Input Data Fit Functions Existing SEDs SDC Catalogs Name	ault Time Filtering Templates Export	Y Axis: nuFnu (v Update Plot Energy Filtering Instr Sensitivity VO Tools Expand all Collapse all	erg/cm2/s) • Models Plot options	Holp
X Axis: Free Plot Type: Definitions Input Data Fit Functions Existing SEDs SDC Catalogs Name Radio	ault Time Filtering Templates Export	Y Axis: nuFnu (v Update Plot Energy Filtering Instr Sensitivity VO Tools Expand all Collapse all	Models Plot options Options	Haip
X Axis: Free Plot Type: Definitions Input Data Fit Functions Existing SEDs SDC Catalogs Name > Radio > Infrared	ault Time Filtering Templates Export	Y Axis: nuFnu (v Update Plot Energy Filtering Instr Sensitivity VO Tools Expand all Collapse all	erg/cm2/s) • Models Plot options Options	Heip
X Axis: Free Plot Type: Definitions Input Data Fit Functions Existing SEDs SDC Catalogs Name P Ratio P Ratio P Infrared Copical UV	ault Time Filtering Templates Export	Y Axis: nuFnu (v Update Plot Energy Filtering Instr Sensitivity VO Tools Expand all Collapse all	erg/cm2/s) • Models Plot options	Heip

External Catalogs

Gamma Ray

► VHE

Name			Credis	Search	Options
2MASS	1	4	0		vsu
Catalina RTS	1	4	0		vsu
NED	13	1	0	3C454.3	vsu

NEW AGILE CATALOGS:

• The second AGILE Catalog: 2AGL final validation in progress (Bulgarelli et al.,)

New AGILE-GRID source catalog over the whole period of AGILE **pointed observations** (first 2.3 years), with improved event filter and updated calibrations.

More than 350 sources, >180 on the galactic plane only

The Cygnus region \rightarrow

Galactic Center region: very complicate data analysis, *in progress* (Fioretti et al.).

The inner Galaxy seen by AGILE (E > 100 MeV)

Search for GeV counterparts of TeV sources with AGILE in pointing mode

INPUT: **147** Tev source positions taken from the **TeVCat** Web based catalog (http://tevact.uchicago.edu)

A. Rappoldi, F. Lucarelli, C. Pittori et al., 2015 (to be published in A&A)

Results: known and new sources

In total, **52** TeV sources show a significant *count excess* in the AGILE data covering the pointed observation period, corresponding to 35% of the original sample

Among them, **26** have a spatial association with already known AGILE sources from 1AGL/1AGLR catalogs (within 95% C.L. *error radius*): 15 galactic, **6** extra-galactic, **5** unassociated

The other **26** detections represent new AGILE sources (with respect to the reference catalogs): 15 galactic, **7** extra-galactic, **4** unidentified

(New sources will be also included in the 2AGL catalog)

Variable sources and transients: the AGILE Science Alert System

• The system is distributed among the ADC @ ASDC and the AGILE Team Institutes (Trifoglio, Bulgarelli, Gianotti et al.)

• Automatic Alerts to the AGILE Team are generated within $T_0 + 45$ min (SA) and $T_0 + 100$ min (GRID)

• GRID / ATel #2761 (Lucarelli et al. 2010) led to t-bycontact | the discovery of:

• Refine day (dai $\frac{MWC \ 656, \ the \ first \ Be/BH \ binary}{Casares \ et \ al., \ Nature \ 505, \ 2014}$

ned every

• **126 ATel** (48 in pointing + 78 in spinning) and **44 GCN** published up to June, 2015: **recently** several transient sources and new record gamma-ray flare from **3C 279** (**but no new** Crab flares or Cyg X-3, Cyg X-1 flares yet...)

+ App for mobile devices!

AGILE: "very fast" Ground Segment (with contained costs)

Record for a gamma-ray mission!

Main galactic AGILE discoveries above 100 MeV

 Carina region: γ-ray detection of the colliding wind massive binary system η-Car with AGILE

Tavani et al., ApJ, 698, L142, 2009 (arXiv:0904.2736)

- Detection of Gamma-Ray Emission from the Vela Pulsar Wind Nebula with AGILE
 Pellizzoni et al., Science 327, 2010
- Cygnus region microquasars:
 - AGILE observations of Cygnus X-1 gamma-ray flares

Sabatini et al., ApJ 2010, Del Monte et al., A&A 2010

 AGILE detects several gamma-ray flares from Cygnus X-3, and also weak persistent emission above 100 MeV

Tavani et al., Nature 462, 620, 2009 (arXiv:0910.5344)

Neutral pion emission from accelerated protons in the SNR W44

Giuliani et al., ApJ, 742, 2011

Microquasars

Open questions (pre-AGILE):

• Can jet formation accelerate relativistic particles?

• Can the jet emit γ-rays above 100 MeV?

The discovery of the γ-ray activity from Cygnus X-3 is the proof of extreme particle acceleration in microquasars.

The γ -ray detection of Cygnus X-3: brief story of a discoverv

0.07

0.06

0.04

0.03

0.02

0.01

0.00

-0.01

BAT daily flux (15-50 keV) cnts/cm**2/sec

December 2, 2009:

The AGILE-GRID detects 4 γ -ray flares from C

("Extreme particle acceleration in the microquasar Cygnus X-3", Tave 5

- γ -ray flaring-fluxes greater than 1 order of magnitude with
- coincident with **prominent minima** of the hard X-ray flux
- a few days before major radio flares \triangleright

December 11, 2009:

Fermi-LAT confirms AGILE det

("Modulated High-Energy Gamma-Ray Emission

 γ -ray detection of the orbital period microquasar

In 9 days a long-lasting mystery ha Cygnus X-3 is able to acceler energies and to emit y-ray

MJD

Major gamma-ray flares in special transitional states in preparation of radio flares!

- Gamma-ray flares tend to occur in the **rare** lowflux/pre-flare radio states.
- For all gamma-ray flaring episodes, the radio and hard-X-ray fluxes are low or very low, while the soft X-ray flux is large

SPORADIC

- 2 AGILE detected episodes:
- Hard state
- Hard-to-soft transition

REPETITIVE PATTERN !!

- bright soft X-ray states (soft-to-hard state transitions)
- state preceeding strong radio flares.

Cygnus X-1 Cygnus X-3

Compact Object	4-15 M _☉ BH	1.4 M $_{\odot}$ NS or 10 M $_{\odot}$ BH
Companion	O9.7 Supergiant, L ~ 10 ³⁹ erg/s	Wolf Rayet, L ~ 10 ³⁹ erg/s
Companion wind	~ 10 ⁻⁶ M _☉ /yr, v ~ 2000 km/s	~ 10⁻⁵ M _☉ /yr, v ~ 1000 km/s
Period	5.6 days, orb. r. ~ 3.4 x 10 ¹² cm	4.8 h, orb. r. ~ 3 x 10 ¹¹ cm
Inclination Angle	30?	< 14

Cygnus X-3 is unique in orbital separation, luminosity of the companion star and inclination -> different behaviour can be expected in the two systems

Slide from S. Sabatini, RICAP-13

First evidence of proton acceleration in the Supernova Remnant W44 with AGILE

SNR W44

Fig 1 : SNR W44 as seen by AGILE for energies greater than 400 MeV A. Giuliani et al., ApJ 742, 2011

Fig 3 :combined AGILE (red) and Fermi/LAT (green) spectra energy distribution (SED) for SNR W44. AGILE points are in the range 50 MeV- 10 GeV divided in six energy intervals. Fermi/LAT data span the energy range 0,2-30GeV (from Abdo et al, 2010)

Acceleration evidence in SNR The Pion bump:

unique signature!

Cardillo et al·, A&A 565, 2014

Two classes of γ-ray SNR

At 100 MeV middle-aged SNRs are brighter: AGILE SNRs on average older than TeV or Fermi SNRs

UNEXPECTED DISCOVERY FROM THE γ -RAY SKY:

AGILE DISCOVERY OF THE CRAB NEBULA VARIABILITY IN γ -RAYS

Tavani et al., Science, 331, 736 (2011)

Fermi confirmation: Abdo et al., <u>Science</u>, 331, 739 (2011)

The variable Crab Nebula!

FIRST PUBLIC ANNOUNCEMENT Sept. 22, 2010: AGILE issues the Astronomer's Telegram n. 2855

Science Express (6 January 2011)

AGILE: SURPRISES FROM THE EARTH ATHMOSPHERE

AGILE contributions to TGF science

 TGF energy range extends at least to 40 MeV, doubling the previous range set by RHESSI:
 Marisaldi et al., J. Geophys.Res.
 115 (2010)

 TGFs can be localized from space directly in gamma-rays by the AGILE silicon tracker:
 Marisaldi et al., Phys. Rev. Lett.

105 (2010)

TGF Cumulative spectrum

In 2011: 110 TGFs 1806 photons 142 γ E> 10 MeV 26 γ E> 20 MeV

Significant detection of γ >40 MeV!! Uneplained by standard RREA model: challenge for emission models

AGILE-MCAL crucial spectral contribution up to 100 MeV!!

Tavani et al., Phys. Rev. Letters 106, 018501 (2011)

Recent change on the on-board configuration to reduce MCAL dead time: submillisecond timescales

AGILE TGF monthly detection rate [02/03/2009 ÷ 17/05/2015]

month

AGILE and the Earth

- much improved detection capability for TGFs (rate > 10 times larger than before)
- detection of repeated TGFs from the same thunderstorm
- meteorology of TGFs
- impacts of TGFs
- gamma-ray mapping of the Earth

FUTURE: A NEW Real Time Pipeline to Link Meteorological Information and TGFs Detected by AGILE

Extend also to Terrestrial data the ASDC expertise on web based interactive tools and cross-correlations among different DBs and archives

AGILE: 8th year in orbit

• Pointing observation mode up to October 18, 2009 and spinning observation mode since October 2009.

- Very good scientific performance, especially at ~ 100 MeV
- 40000 orbits around the Earth completed on January 19, 2015
- All AGILE functions are NOMINAL. Mission operations funded by ASI at least till 2016, March.
- Guest Observer Program open to the scientific community 4 ASI Announcements of Opportunity from Cycle-1 to Cycle-4: completed (Dec. 1, 2007– Nov 30, 2011).
 Cycle-5, 6 and 7: completed (Dec.1, 2001 – Dec. 31 2014).
 Cycle-8 on-going data taking

The public AGILE archive now contains all data from Dec 2007 up to Nov 2013 (from Cycle-1 to Cycle-6)

AGILE Processing Archive

 New Processing Archive SPINNING (sw=5_21_18_19)
 POINTING (sw=5_19_18_17)
 Old Processing Archive (sw=3_18_17_16)

The AGILE Mission Board suggested in 2015 to eliminate the one year proprietary period.

Data will be published as soon as they will be processed and validated, **about 4 times a year.**

Next delivery on September 2015: new public data up to June 2015

Submit

On-line science ready ML results (no need to install any software)

The future...

 Community should focus and «coalesce» into future projects

> MeV - GeV astrophysics: OPENS A NEW OBSERVATION WINDOW

- MeV-GeV astrophysics: the ASTROGAM project
- Next chance: ESA M5
- Open to discussion and collaboration

The next gamma-ray MeV-GeV mission: the ASTROGAM project

Proposed for the ESA M4 call; currently under study for enhancement and reconfiguration for the ESA M5 call. ASTROGAM is **focused on gamma-ray astrophysics in the range 0.3-100 MeV** with excellent capability also at GeV energies. ÷

ASTROGAM History and heritage

MeV - GeV astrophysics

- A new window for Galactic, extragalactic & fundamental science.
- Broad band (0.3 MeV 3 GeV), focused on the mostly unexplored energy range (0.3- 100 MeV). Continuum & line detection.

ASTROGAM Sensitivity

E (keV)	FWHM (keV)	Gamma-ray line origin	SPI sensitivity (ph cm ⁻² s ⁻¹)	ASTROGAM (ph cm ⁻² s ⁻¹)
847	35	⁵⁶ Co line from thermonuclear SN	$2.3 \cdot 10^{-4}$	$8.7 \cdot 10^{-6}$
1157	15	⁴⁴ Ti line from core-collapse SN remnants	9.6 ´ 10 ⁻⁵	$8.4 \cdot 10^{-6}$
1275	20	²² Na line from classical novae of the ONe type	$1.1 \cdot 10^{-4}$	$1.1 \cdot 10^{-5}$
2223	20	Neutron capture line from accreting neutron stars	$1.1 \cdot 10^{-4}$	$1.2 \cdot 10^{-5}$

ASTROGAM

Time domain astronomy

- A wide-field γ-ray observatory operating at the same time as facilities like LSST and SKA will give a more coherent picture of the transient sky.
- CTA science related to variable sources will need a coverage of the γ-ray sky at lower energies to trigger Target-of-Opportunity observations.

For what will ASTROGAM be remembered ?

- Origin of the elements & CR feedback in star formation
- Central region of the Galaxy, the BH activity, origin of antimatter
- Resolving the mystery of the extragalactic gamma-ray background in the MeV range
- DM searches in regimes not accessible by current accelerators or other indirect searches
- ASTROGAM will change our view of the nearby and distant Universe !

Payload and satellite

○ ESA guidelines for the M4 Call \Rightarrow ASTROGAM payload designed to be 300 kg (total satellite mass 860 kg).

- Steerable solar panels
- Microsecond timing through a GPS unit.
- Possibility of fast communication to the ground through TDRSS.

13th AGILE Science Workshop

AGILE: 8 AND COUNTING

All presentations available on-line from: http://www.asdc.asi.it13thagilemeeting/

Gamma-ray Imaging Detector (GRID)		
Energy Range	30 MeV – 50 GeV	
Field of view	$\sim 3~{ m sr}$	
Sensitivity at 100 MeV (ph cm ⁻² s ⁻¹ MeV ⁻¹)	6×10^{-9}	$(5\sigma \text{ in } 10^{6} \text{ s})$
Sensitivity at 1 GeV (ph cm ⁻² s ⁻¹ MeV ⁻¹)	4×10^{-11}	$(5\sigma \text{ in } 10^{6} \text{ s})$
Angular Resolution at 1 GeV	36 arcmin	(68% cont. radius)
Source Location Accuracy	\sim 5–20 arcmin	S/N~10
Energy Resolution	$\Delta E/E \sim 1$	at 300 MeV
Absolute Time Resolution	$\sim 1\mu s$	
Deadtime	$\sim 200 \mu s$	
Hard X-ray Imaging Detector (Super-AGILE)		
Energy Range	10 - 40 keV	
Field of view	$107^{\circ} \times 68^{\circ}$	FW at Zero Sens.
Sensitivity (at 15 keV)	$\sim 5 \text{ mCrab}$	(5 <i>7</i> in 1 day)
Angular Resolution (pixel size)	\sim 6 arcmin	
Source Location Accuracy	\sim 2-3 arcmin	S/N~10
Energy Resolution	$\Delta E < 4 \text{ keV}$	
Absolute Time Resolution	$\sim4\mu s$	
Deadtime (for each of the 16 readout units)	$\sim4\mu m s$	
Mini-Calorimeter		
Energy Range	0.3 - 200 MeV	
Energy Resolution	$\sim 1 \text{ MeV}$	above 1 MeV
Absolute Time Resolution	$\sim 3~\mu s$	
Deadtime (for each of the 30 CsI bars)	$\sim 20\mu m s$	