

H.E.S.S.

Christian Stegmann for the H.E.S.S. collaboration The Future of Research on Cosmic Gamma Rays August 2015, La Palma

The H.E.S.S. Collaboration

- MPI Kernphysik, Heidelberg, Humboldt Univ. zu Berlin, Ruhr-Univ. Bochum, Univ. Erlangen-Nuremberg, Univ. Hamburg, LSW Heidelberg, Univ. Potsdam, Univ. Tübingen, DESY
- Ecole Polytechnique, Palaiseau, APC Paris, Univ. Paris VI-VII, Univ. Bordeaux, Observatory Paris, Meudon, LAPP Annecy, LUPM Montpellier, CEA Saclay, IPAG Grenoble
- Stockholm University, Royal Institute, Linnaeus University, Durham Univ., Univ, Leicester, Dublin Inst. for Adv. Studies, GRAPPA U. Amsterdam
- Polish Academy of Sciences; Jagiellonian University, Cracow; Nicolaus Copernicus University, Torun; University of Warsaw, Warsaw
- Univ. Adelaide, North-West Univ., Potchefstroom, Wits Univ., Johannesburg, Univ. of Namibie, Windhoek

The H.E.S.S. Experiment

- H.E.S.S. phase I
 - four 12m telescopes
 - FoV 5 deg
 - energy threshold 100 GeV
 - angular resolution < 0.1 deg</p>

H.E.S.S. phase I

• H.E.S.S. phase II

H.E.S.S. phase II

- four 12m telescopes
- one 28m telescope (FoV 3.5 deg)
- energy threshold O(30 GeV)
- angular resolution from 0.4 deg to less than 0.1 deg

HESS

The H.E.S.S. Experiment

H.E.S.S. phase I

- more than 10000 hours of data
- discovered over 80 new VHE gamma ray sources
- published over 100 scientific papers, plus numerous conference contributions
- H.E.S.S. phase II
 - towards lower threshold and transients

H.E.S.S. Data Quality

- Morphologies
 - spacial
 - energy-dependent
- Periodicities/Variability
 - from ms to years
- Energy-coverage
 - over several decades
- Source position
 - on the arc-second level

RX J1713-3946

HESS J1825-137

This Talk

- Towards population studies of gamma-ray sources
- High precision physics of gamma-ray sources
- Pushing experimental borders

H.E.S.S. Galactic Plane Scan

H.E.S.S. Galactic Plane Scan

- 2673 hours of high-quality data, taken in the years 2004 to 2013.
 - Longitude I = 250 to 65 degrees, latitude |b| < 3.5 degrees</p>
 - Sensitivity for the detection of point-like sources is at the level of 2% Crab or better

Morphology Model

- Source extraction with automatic pipeline
- Likelihood fit of emission by multiple Gaussian components plus diffuse background, Overlapping emission components combined
- HGPS catalog
 77 = 64 + 13 complex
 sources (e.g. shell SNR)
 excluded from pipeline

Gaussian Band Large-Scale Emission Model

The Galactic Plane in Gamma-rays

Associations

 Systematic association of HGPS sources with nearby PSR, SNR, PWN, GeV sources (3FGL and 1FHL)

Identifications

Towards Precision Physics

RX J1713-3946

Galactic Center Region

High Precision Measurement of the Galactic Center

Galactic longitude

- Full dataset: 2004 2012
- 220 hours
- HESS J1745-303, G0.9+0.1 excluded

16

Cosmic-ray Density Distribution

- Correlation with molecular clouds
 → pp interaction target mass (M)
- Gamma-ray luminosity (L) in several regions
 → CR density ~L/M
- Central accelerator located within 10 pc and injecting CRs continuously for > 1kyrs

Diffuse Emission and Injection Spectra

- Diffuse gamma-ray spectrum
 - E^{-2.3} up to 50 TeV w/o cutoff
- Assume central source of protons
 - Solve transport equation of protons
 - fit to HESS data
- Proton injection spectrum:
 - E^{-2.2} power law from GeV to few PeV
 - Cut-off
 0.6 PeV at 90% CL
 2.9 PeV at 68% CL

A cosmic PeVatron!

High Precision Measurements of RX J1713-3946

16m

Excess

17h10m

12m

14m

RA (J2000)

RX J1713-3946: Full Remnant Photon Flux Spectrum

Modelling the Spectral Energy Distribution

Spectral fits performed with naima (V. Zabalza)

Particle Distributions

clumps?

 Synchrotron cooling? Required B-field ~140 μG X-ray measurement B = 14.8 ± 0.2 μG

Mapping the Magnetic Field

TeV: H.E.S.S.

Radial Profiles: X-ray vs TeV

H.E.S.S. II Performance

H.E.S.S. II

- Operation of the first mixed system of Cherenkov telescopes
- Trigger, all configurations simultaneously

CT5 mono 65%

Analysis

- Mono = CT5 only
- Stereo = ≥ 2 telescopes
- Combined = Mono + Stereo (select better fit in overlap region)

Crab with H.E.S.S. II

Crab Energy Spectrum

- Energy threshold ≈ 230 GeV
 - H.E.S.S. I: ≈ 440 GeV
 - possible to go lower (systematics to be understood)

H.E.S.S. II Performance

- Analysis
 - Standard
 - Loose
- Thresholds
 - Normal @ 20°: 80 GeV
 - Normal @ 45°: 250 GeV
- Sensitivity
 - **50h**
 - S/B \geq 0.05 for each bin

Vela Pulsar

- 24h high quality data collected in 2013 and 2014
- Zenith angle range [20° 35°]
- Analysis cuts optimised for gamma-ray events below 100 GeV
- Effective area at 20 GeV and 20° zenith angle: 1.9 x 10³ m²

Vela Pulsar: Spectral Energy Distribution

- H.E.S.S. II energy range: 20 GeV -> 120 GeV
- Statistics limit definite conclusion between
 - power law
 - sub-exponential cut-off power law

Galactic Center with H.E.S.S. II

- 58.6 h taken in 2013 and early 2014
- Zenith angles from 5°-45° deg (mean 22°),
- offset for Sgr A* position 0°-1.4° (mean 0.5°)
- More data on disk

Galactic Center Energy Distribution

H.E.S.S. I Camera Upgrade

- Motivation
 - decrease deadtime
 - increase up-time
- prepare for at least 3 more years of operation

What	How much/many
Pixels	960
Power (Drawer)	29 W
Power (Camera)	5-6 kW
Dynamic range	2000
Bandwidth	300 MHz
Sampling rate	1 GHz
Readout window	16 ns *
High Voltage	1.0 - 1.6 kV
Dark rate (PMT)	100 - 500 MHz *
Data rate (Camera)	1 kHz *
Data rate (array)	1.7 kHz *
Event size	12 kB (uncompressed)
Data bandwidth	1 GBit/s
Weight	910 kg
Field of view	5°

A New Camera

The first camera to be upgraded

Upgrade of CT1 in July/August

CT1 is working

Summary

H.E.S.S. is

- continuing to contribute to our understanding of the high-energy Universe
- filling the gap between Fermi-LAT and IACTs
- Exciting times ahead of us

H.E.S.S. I Highlights: A selection

- Diffuse emission
 - after subtraction of sources
- Galactic center
- Extreme SNR
 - HESS J1640-465: The brightest
 - G349.7+0.2: The farthest
- Population studies
 - Pulsar wind nebulae population
 - AGN limits
- many more

