The ARGO-YBJ experiment and the potential of Resistive Plate Chambers for Cosmic Ray physics

By R. Santonico

"The future of research on Cosmic Gamma Rays"

La Palma 26 Aug 2015

The purpose

- The purpose of this talk is to show the potential of the Resistive Plate Chamber for the ground based Cosmic Ray detection
- Argo was the first application in this direction
- The results of this experiment are deeply related to the RPC features and to their optimization for the detection of cosmic showers
- The experience made with Argo is a solid starting point to extrapolate the performance of a second generation experiment based on a substantially upgraded type of RPC
- A special emphasis is put on the detection of gamma rays in the energy range down to 100 GeV, having in mind a possible proposal of a wide FoV gamma-ray detector, to be located in the Southern Hemisphere

Longitude: 90° 31' 50" East Latitude: 30° 06' 38" North 4300 m above sea level ∞ 600 g/cm²

90 km North from Lhasa (Tibet)

The basic concepts

... for an unconventional air shower detector

✤ HIGH ALTITUDE SITE

- Tibet 4300 m asl - 600 g/cm2)

✤ FULL COVERAGE (RPC)

(YBJ

technology, 92% covering factor)

✤ HIGH SEGMENTATION OF THE READOUT

(small space-time pixels)

Space pixels: 146,880 strips $(7 \times 62 \text{ cm}^2)$ Time pixels: 18,360 pads $(56 \times 62 \text{ cm}^2)$

... in order to

- image the shower front with unprecedented details
- get an energy threshold of a few hundreds of GeV

The Argo detector

Status and performance

- In observation since July 2004 (with small portions of the detector)
- Stable data taking since November 2007
- End/Stop data taking: January 2013
- Very modest maintenance in a hostile environment
- Average duty cycle ~87% Dead time mostly due to frequent cuts of electric power
- Trigger rate ~3.5 kHz @ 20 pad threshold
- N. recorded events: $\approx 5.10^{11}$ from 100 GeV to 10 PeV
- 100 TB/year data

Intrinsic Trigger Rate stability 0.5% (after corrections for T/p effects)

Schematic cross section of a Argo RPC

- A RPC is just a gas filled plane capacitor with high resistivity electrodes
- External signal pick up electrodes can be easily tailored with any shape
- Argo gas mixture: $C_2H_2F_4/Ar/iC_4H_{10} = 75/15/10$ Time resolution ~ 1.5 ns

The RPC wide range of applications

- The RPCs found a wide range of applications. They are used as muon trigger detectors in 3 out of the 4 LHC main experiments
- They are also used, in the multigap configuration, as Time of Flight detectors for mass identification, with a time resolution of 50 ps
- Due to their simplicity and robustness they were used as Cosmic Ray detectors in Argo.
- On the other hand it has also to be stressed that a wide range of applications is essential for the production of components, like eg a full custom front-end circuit, that is only possible on a large scale base

Higgs boson 4 muons decay in Atlas

The RPC analog readout Extending the dynamical range up to PeV

- Is crucial to extend the covered energy range above 100 TeV, where the strip read-out saturates
- Max digital density $\sim 20/m^2$ Max analog dens $\sim 10^4/m^2$
- Access the LDF in the shower core
- Sensitivity to primary mass
- Info/checks on Hadronic Interactions

ARGO event

Operating a large size detector at 4300 m asl

- Efficient detector control system (DCS) to monitor
 - External temperature and pressure
 - Detector temperature
 - Operating currents of each chamber
 - Trigger rate

Temperature annual oscillations

Operating current distribution for the 1681 RPCs (3.5 m² each)

μA

Gamma-ray Astromomy ARGO-YBJ 5-years survey of the Northern Sky

ARGO-YBJ 5-years Survey of Inner Galactic Plane

G. Di Sciascio, Frascati E₅0 ≈ 1.8 TeV

Cosmic ray physics All-particle spectrum by ARGO-YBJ

ARGO-YBJ reported evidence for the all-particle knee at the expected energy

Light component spectrum (3 TeV - 5 PeV) by ARGO-YBJ

A look to the future

Based on the Argo experience, a number of relevant upgrades can be conceived to improve the sensitivity of a similar detector, in particular for low energy gamma rays

Upgrades: larger detection area and Photon conversion

The results of Argo in gamma ray astronomy and CR physics were achieved with a substantially **downgraded** detector with respect the proposal, which was based on

- A RPC carpet of 120x120 m²
- A $1X_0$ Pb converter on top of it

The real detector was a carpet of 5600 m² without any photon converter on top.

An obvious upgrade:

- increase the area to 10 000-20 000 m²
 - Much higher statistics
 - **photon-hadron discrimination** possible (the small size of Argo did not allow this discrimination)
- A 1X₀ Pb photon converter would increase the number of detected shower particle by a factor ~ 5!!

Large spread of arrival times

Gamma-proton shower discrimination

X(m)

Primary photons of 100 GeV, 500 GeV and 5 TeV at 5000 m asl

Photons are the main component of the shower

Upgrades:

Operation at higher altitudes

- Operating at higher altitudes, ~5000 m, would be a further important advantage, mainly for low energy photons
- Extrapolation from 4300 m to 5000 m (about -1.4 X₀) gives an increase of almost a factor of 2 for the number of particles produced by a 100 GeV primary photon

Upgrades:

Improving the detector performance (1)

- Fully analog read out
 - The experience with Argo suggests that for a shower detection the analog read out is more effective than the digital one and should be extended from the "big pad" to the full signal read out
 - With this approach, squared pick up electrodes of area e.g. 30x30 cm² or 40x40 cm², would be more effective than substantially longer strips. The signal amplitude recorded by ADCs would substantially improve the amount of information
 - 1 TDC + 1 ADC per pad
 - → Space-time sampling of the shower front with an unprecedented detail !
- Avalanche mode operation (Argo was operated in streamer)
 - Lower delivered charge and lower operating current \rightarrow lower gas consumption
 - Much wider dynamic range of the analog read out
 - Should allow to resolve a very closed e+e- pair produced by a photon annihilation, its signal amplitude being twice the m.i.p.
 - Better timing. Sub-nanosecond resolution possible but should be compared with the intrinsic shower front fluctuations
- A relevant investment of simulation is crucial to test different ideas of optimization

Upgrades:

Improving the detector performance (2)

- Front end electronics
 - A new full custom front end circuit, dedicated to the RPCs, is under development (by R. Cardarelli) and will replace the one used for Argo
 - Final front end electronics optimized for the avalanche mode operation
 - The full custom circuit will integrate the ADC and TDC functions
 - The output for each fired pad will be a shaped signal, suitable for coincidence logics, equipped with two numbers digitizing the Amplitude and the Time respectively
 - A crucial solution to avoid a huge complexity of interconnected circuits needed to discriminate and to digitize the input signal
- A relevant investment of simulation is crucial to test different upgrade ideas and to optimize the detector, balancing performance and complexity
- Collaborators interested to a full detector simulation would be highly welcome

```
Upgrades:
the gas system
```

- The Argo Gas system was operated in open flow. The operation in closed loop, foreseen in the proposal, remained at the prototype level and was never implemented
- A gas recirculation/purification system would make the running cost negligible thus creating the best conditions for a very long term data acquisition

Conclusions

- The combination of high altitude site, full coverage and high segmentation of the read out, made Argo a unique experiment, which achieved relevant results even beyond the expectations of the proposal
- To extend this original approach to a new upgraded experiment, taking fully into account the experience made with Argo, will offer a relevant discovery potential
- A substantial upgrade of the performance is possible thanks to a number of well identified parameters/operations:
 - Increased detector area
 - Addition of a photon converter
 - Higher altitude site
 - RPC avalanche mode operation with improved timing and fully analog read out
 - New front end full custom circuit integrating the ADC and TDC functions
 - Gas closed loop

Conclusions (cont.)

- All these improvements allow to sample the shower front with a space-time resolution of about 10 cm x 1 ns or better.
- However a full simulation is needed to find the required optimal resolution, taking into account the intrinsic fluctuations of the shower front. This simulation can profit of the Argo experience as a solid reference point to extrapolate the performance of a new detector.
- A RPC wide FoV gamma-ray detector, in the energy range 100 GeV-10 TeV, located in the Southern Hemisphere, would be unique and complementary to other experiments planned to take data in the next decade
- We (G Di Sciascio, R. Santonico and M.Tavani) propose to organize a meeting of interested groups, to be held in Rome 2 at the beginning of December, dedicated to discuss this exciting idea