

GALACTIC PHYSICS WITH CTA

Ryan C. G. Chaves¹ for the the CTA Consortium

¹CNRS/IN2P3 / Univ. Montpellier, France

THE NEXT GENERATION: CTA

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

THEME 1

Understanding the origin and role of relativistic cosmic particles

What are the sites of high-energy particle acceleration in the Galaxy?

What are the mechanisms for cosmic particle acceleration?

What role do accelerated particles play in feedback on star formation?

THEME 2

Probing extreme environments

What physical processes are at work close to neutron stars and black holes? What are the characteristics of relativistic jets, winds, and explosions?

Galactic Plane Survey

Cosmic-ray PeVatrons /

Supernova remnant

GALACTIC KEY SCIENCE PROGRAMS

Large Magellanic Cloud

LMC

A unique target to study extreme Galactic-type VHE sources & diffuse emission (CRs)

Face-on satellite galaxy:

- No source confusion
- Relatively nearby, and no distance ambiguity

Very active:

- Only 1% mass of the Milky Way
- Yet 10% the SFR

Potential pointing pattern overlaid on starry sky image

LMC SIMULATIONS

Include:

- known VHE sources
 - N 157B: most energetic pulsar, $\sim 10^{38}$ erg/s
 - 30 Dor C: superbubble
 - N 132D: radio-loud SNR (50% L_{radio} Cas A)
- luminous point-like sources
- CR-enriched regions
- Youngest SNR: SN 1987A

LMC SIMULATIONS

CTA performance

H.E.S.S.-like performance 1 pointing, 16 h, 0.8-100 TeV

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

64°00'

120

Key science questions:

What is the impact of CRs on the ISM & how do they propagate?

What is the relationship between star formation & particle acceleration in systems on different scales?

Motivated also by:

- well-established correlation in FIR
- correlation seen recently in GeV γ -rays

Cygnus & Carina regions will be mapped at high resolution

Complementary Galactic and extragalactic science

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

GPS IN CONTEXT

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

GPS IN CONTEXT

Experiment	Hemisphere	Galactic Plane Cov	erage Energy	(GeV) Sensitivity (mCrab)
H.E.S.SI	\mathbf{S}	$-70^{\circ} < l < 60^{\circ}, b $	$< 2^{\circ} > \sim$	300 10 - 30
VERITAS	Ν	$67^{\circ} < l < 83^{\circ}, -1^{\circ} < 10^{\circ}$	$b < 4^{\circ} > \sim$	300 20 - 30
ARGO-YBJ	Ν	Northern Sky	> 3	00 240 - 1000
HEGRA	Ν	$-2^{\circ} < l < 85^{\circ}, b $	$< 1^{\circ} > 6$	$00 \qquad 150-250$
Milagro	Ν	Northern Sky	> 10	000 300 - 500
Observatory	Hemisphere	Energy Threshold	Angular Resolut	ion Pt. Source Sensitivity
CTA	N, S	$125 {\rm GeV}$	$\sim 0.10^\circ$ at 300 (eV = 2 - 4 mCrab
HAWC	Ν	$2 { m TeV}$	0.30°	$20 \mathrm{mCrab}$

		STP	LTP	Total		
	(Years 1 - 2)		$(Years \ 3 - 10)$	(Yea	$rs \ 1 - 10)$	
Galactic Longitude	Hours	Sensitivity	Hours	Hours	Sensitivity	
SOUTH						
$300^{\circ} - 60^{\circ}$, Inner region	300	$2.7 \mathrm{mCrab}$	480	780	1.8 mCrab	
240° – 300° , Vela, Carina			180	180	2.6 mCrab	
$210^\circ-240^\circ$			60	60	$3.1 \mathrm{mCrab}$	
				1020		
NORTH						
$60^{\circ} - 150^{\circ}$, Cygnus, Perseus	180	4.2 mCrab	270	450	2.7 mCrab	
150° – 210° , Anti-center, etc.			150	150	3.8 mCrab	
				600		

GPS IN CONTEXT

~mCrab and uniform sensitivity with CTA GPS in just 2 years

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

GRADED SENSITIVITY APPROACH

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

cherenkov telescope array

Increase population of known Galactic VHE sources x 3–9+

- **Discover** new VHE source classes and unexpected phenomena
- Search for Galatic CR PeVatrons
- Measure large-scale diffuse emission
- **Detect** new γ -ray binaries & other variable or transient sources
- **Provide** first-look science data to other KSPs & General Observers
- **Produce** a multi-purpose legacy dataset to MWL community

Increase population of known Galactic VHE sources x 3–9++

NEW SOURCE CLASSES

Discover new VHE source classes and unexpected phenomena

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

PEVATRON SEARCH

Search for Galatic CR PeVatrons

The Future of Research on Cosmic Gamma Rays - Galactic Physics with CTA, August 2015

GPS SIMULATIONS

Source populations modeled:

• Both SNRs & PWNe

-60

_atitude (deg)

• Fitted to known detections (TeVCat)

-40

Expected diffuse emission: Both IC & π^0 components (GALPROP)

-20

Energy range: 1-10 TeV

ctools open-source software with latest IRFs for North & South arrays

0

Longitude (deg)

20

Actual GPS observation scheme (**1620 h**)

Most realistic simulations to date & work on-going

Full-plane coverage: longitude \pm 180°, latitude $b \pm$ 10°

Fine detail revealed with ~arcmin PSF

Knoedlseder+ (CTA)

GPS SIMULATIONS: ZOOM

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

Discover Galactic CR PeVatrons responsible for CR knee

Specifically:

Where & how in the Galaxy are CRs accelerated up to PeV energies?

What is the distribution of PeVatrons in the Galaxy?

Are we sitting in a particular location of the Galaxy, or is there a uniform CR sea within the whole Galaxy (understanding diffusion by observing gamma-ray accelerators and their surroundings)?

Do young shell-type SNRs accelerate hadronic CRs up to PeV energies?

If so, up to which energies, and how effective is this acceleration (probing the theory of non-linear DSA)?

WHERE ARE THE PEVATRONS?

One way to get to CR knee (~3 PeV) energies, quite specific:

Young, fast (20,000 km s⁻¹) SNR shock in dense wind (CSM) from a Type II SN & RSG progenitor

e.g. 330-yr-old Cas A, but Γ = 2.6 ± 0.2_{stat} ± 0.2_{syst}

Other historical SNRs are challenging as well, c.f. updated Tycho (SN Ia) spectrum from VERITAS ($\Gamma = 1.95 \pm 0.51_{stat} \pm 0.30_{syst} \rightarrow \Gamma = 2.92 \pm 0.41_{stat}$)

Are PeVatrons short lived?

MHD instability quenched after ~1000 yrs (~age RX J1713), e.g. Schure & Bell 2013 E_{max} ~ PeV for only ~100 yrs or less

Observation strategy for Cherenkov telescopes?

Hidden in the existing data but confused/obscured? Just need more statistics / better sensitivity at multi-TeV E? Not looking at the right objects, biased by well-known SNRs? Molecular clouds? The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

WHERE ARE THE PEVATRONS?

GPS ideal strategy to identify PeVatron candidates

- few mCrab sensitivity along entire plane
- E-range up to hundreds of TeV
- arcmin PSF to reduce source confusion

PEVATRON IDENTIFICATION

Specifically, candidates should exhibit:

- No VHE cut-off or break: $3-\sigma$ signal above 50 TeV
- Hard photon spectrum: $\Gamma \approx 2.0$ •

KSP follow-up of top 3 candidates:

+50 h deep observations of each to confirm & measure spectra

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

SNR RX J1713

Deeper obs. (+50 h min.) of most prominent γ -ray SNR

To disentangle leptonic / hadronic acceleration

e.g. through precision imaging of shell morphology

To probe surrounding molecular environment (e.g. Gabici & Aharonian 07)

Leveraging next-gen PSF to better match gas studies

MORPHOLOGICAL APPROACH

50 h CTA simulation

Nakamori+ (CTA) 15

The Future of Research on Cosmic Gamma Rays - Galactic Physics with CTA, August 2015

SPECTRAL APPROACH

If leptonic Leptonic component Hadronic ר. פי dominant, All(MC truth) (erg cm⁻² Leptonic(MC truth) search for 10⁻¹¹ Hadronic(MC truth) hidden hadronic component **10**⁻¹² 10⁻¹³ Nakamori+ (CTA) 15 <u>1</u>0² 10 Energy (TeV)

All

CTA Galactic physics program to focus on:

Galactic Plane Survey for discovery, foundation for deeper observations, and legacy for MWL community

LMC to probe Galactic-type sources & diffuse CRs in face-on galaxy

PeVatrons, not only detection but characterization, and **SNR RX J1713** as unique SNR and potential hadronic accelerator

BACKUP

Galactic KSPs Research questions

A wide coverage of core science themes that drive CTA

Theme			Question	Dark Matter Programme		Galactic Plane Survey	LMC Survey			Cosmic Ray PeVatrons	Star-forming Systems		
1	Understanding the Origin and Role of Relativistic Cosmic Particles	1.1	What are the sites of high-energy particle acceleration in the universe?		V	~~	~~	~~	~~	v	v	V	~~
		1.2	What are the mechanisms for cosmic particle acceleration?		V	v	v		~~	~~	v	~~	
		1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		V		v				~~	V	V
2	Probing Extreme Environments	2.1	What physical processes are at work close to neutron stars and black holes?		V	r	~			~~		~~	
		2.2	What are the characteristics of relativistic jets, winds and explosions?		V	r	~	V	~~	~~		~~	
		2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					V	v			~~	
3	Exploring Frontiers in Physics	3.1	What is the nature of Dark Matter? How is it distributed?	~~	vv		~						V
		3.2	Are there quantum gravitational effects on photon propagation?						~~	~		vv	
		3.3	Do Axion-like particles exist?					V	V			vv	

The Large Magellanic Cloud

132D: A radio-loud middle-aged SNR

N 157B: The Crab Nebula's twin

30 Dor C: A TeV superbubble

14

Doword by

SN 1987A: The youngest SNR

The LMC in VHE γ-rays: Recap

4

The LMC in VHE γ-rays: Spectra

H.E.S

 10^{1}

SFS KSP New Simulations

-4.1 -2.2 -0.34 1.5 3.4 5.3 7.2 9 11

The Future of Research on Cosmic Gamma Rays – Galactic Physics with CTA, August 2015

Precision VHE spectra to ~50 TeV

×

Precision VHE spectra to ~50 TeV

×

