

FANGS

L. Mari, D.L Pohl, A. Eyring, V.Filimonov, C. Marinas, H. Krueger, J. Dingfelder, University of Bonn

FANGS: FE-I4 ATLAS Near Gamma Sensors

 FE-I4 read out chip: CMOS process: radiation hard Read out for 80x336 pixels (26880 pixels) Thickness : 150 μm Physical size : 21x19 mm²

- Sensor: n-in-n planar Pitch=50x250 μm² Physical size=19x20 mm²
- Background radiation measurements in Phase 2:
 - Sensitive to full range of expected X rays
 - Measure high particle rates

Pixel Schematic

mari@physik.uni-bonn.de

TDC Method

Experimental Setup

- MMC3: New data acquisition system for the BEAST experiment
 - Multiple FE read out in parallel
 - Faster FPGA; TDC Method may be improved
- Single ended HitOr signal converted to an LVDS signal.

Pixel-per-pixel Calibration of Hit Or Signal

- Precise energy resolution requires pixel per pixel calibration
- Internal charge injection in units of PlsrDAC
- V_{th} and TDC as a function of charge different for each pixel.

mari@physik.uni-bonn.de

Energy to PlsrDac Calibration

Energy Resolution

- Expected SR energies in Phase 2
- Adequate energy resolution in the expected range
- Better than 15 % above 10 keV

mari@physik.uni-bonn.de

FANGS Stave Design Concept

• Initial concept, following IBL stave design

• Revised design, adapted to BEAST needs

Multiple Chip Readout

- Hit map two FE under Sr90 illumination
- Multiple module parallel readout with MMC3
- Current stave design prompted by absorption of flex components

Backside Illumination

- Effect of components is eliminated by taking a source scan via backside (FE) illumination
- For BEAST, no material in front of the sensor; kapton running parallel to the modules

- Flex design for a single stave of 5 FE-I4 chips
- LVDS drivers converting single ended HitOr signal to differential signal for propagation over long cables
- Drivers positioned in backward direction shielded from radiation behind the PXD cooling block
- Radiation hardness to be investigated

mari@physik.uni-bonn.de

Hit Or Delay and Signal Quality Measurements

- Propagation delay of HitOr over a 19 m CAT 7
- Signal integrity maintained with delay of ~60 ns
- Improvement pulse shape under investigation
- TOT-TDC correlation with gamma source
- TDC values less that 45 (~10 PlsrDac) are not registered
- Experiment threshold is above device constraint

universität**bon**

- Obtained during HitOr calibration; From n internal injections; 500 pixels
- Proper resolution at the expected experiment signals
- Signal integrity maintained over 19 m cable

mari@physik.uni-bonn.de

- Front end has been tuned to cover the expected energy range with sufficient **resolution** for Beast Phase 2
- Multiple-FE DAQ demonstrated
- 19 m long cables tested
- Design of Kapton flex and intermediate boards is underway
- Mechanical concept and cooling management are finalized
- 30 hybrids (FE-I4 and planar sensor) have been prepared

Outlook

- Absorption coefficient (rate measurements)
- External trigger. Multiple module readout with TDC
- Temperature dependence of calibration, noise and energy resolution
- Radiation hardness flex electrical components
- More realistic environment: Spectrum with combined sources and continuum (X-ray machine at different voltages and filters)

Thank you

TDC TOT CORRELATION

• Expected correlation with source scan

- Obtained correlation with HitOr passed over LVDS driver
- TDC values less that 45 (~10 Plsrdac) not registered.
- Lower limit set to ~ 550 electrons

mari@physik.uni-bonn.de

Phase 2 PXD

- Maximum temperature = -4 °C
- Maximum ΔT within one sensor = 4 °C
- Power = 1.2 W each FE
- Cooling block = $-15 \, {}^{\circ}C$
- Environment = 20 °C at 2 m/s

- Proper heat handling
- Low and flat temperature profile

mari@physik.uni-bonn.de

TDC Method

- Distortion observed at 1 MHz with final configuration
- Fixed after addition of one additional 1µF (0402) capacitor

FANGS Stave Dimensions

Aluminum Stave Material Budget

- Low and flat material budget distribution
- No impact in outer detectors

66 μm thick polymide \rightarrow 0.023%X₀ 24 μm Cu (2 layers) \rightarrow 0.17%X₀

mari@physik.uni-bonn.de

Aluminum Stave Material Budget

- Low and flat material budget distribution
- No impact in outer detectors

• Flex

100 µm thick polymide $\rightarrow 0.035\%$ X₀ 70 µm Cu (2 layers) $\rightarrow 0.50\%$ X₀ 50 µm thick Epoxy $\rightarrow 0.014\%$ X₀

Total_{Max}: 3.9% X₀

Possible location for PLUME

CLAWS

FANGS

reads (M1.6) on each mounting block next to the CLAWS

SND

Possible fixation for PLUME

Stave Dimensions: Connector Side

60 pin connector size: 13.8 mm (L) x 2.2 mm (W) x 1.5 mm (T) LVDS inverter size: 2.15 mm (L) x 1.4 mm (W) x 1.1 mm (T) 0402 2.2 uF capacitor size: 1 mm (L) x 0.5 mm (W) x 0.56 mm (T)

universität**bonn**

Stave Dimensions: Connector Side

universität**bonn**

Stave Dimensions: Connector Side

universität**bonn**

- Maximum temperature = -4 °C
- Maximum ΔT within one sensor = 4 °C
- Power = 1.2 W each FE
- Cooling block = $-15 \, {}^{\circ}C$
- Environment = 20 °C at 2 m/s

- Proper heat handling
- Low and flat temperature profile

mari@physik.uni-bonn.de

- Upper limit of Yuri Soloviev simulation: 120 KHz
- (6*2)cm^2 = 12
- 5 fe-i4: (0.202 * 0.188)cm^2 = 0.1898 cm^2
- Rate per unit area: 10 KHz/cm² : 400 MHz hits/cm²/s
- But for TDC method, reduced to: one pixel per read out:
- 80*336=26880 pixels/chip
- Assuming:

TDC Method

