Update on X_0 imaging of Belle II modules

Ulf Stolzenberg for the test beam team

University of Göttingen, II. Physikalisches Institut

September 10th 2015, 8th Belle II VXD Workshop

Image: A matrix of the second seco

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules University of Göttingen

Measurements of Belle II asics

Motivation

- Low material budget is an essential part of the belle II ladder development
- $\bullet\,$ Mean material budget of ladder \approx 0.1-0.2 %
- Small regions (i.e. bump bonds) of highly increased material (worst case: 1%)

Goal

Imaging of balcony and switchers on the DEPFET modules

Updates since Seeon meeting

- $\bullet\,$ Beam energy calibration with precision of a few $\%_0$
- Detailed analysis of Switcher image

Image: A matrix and a matrix

Setup of Telescope for X_0 measurements

- Setup DESY test beam in March 2015
- Spacings chosen this way to keep the angle reco error $\sigma_{\rm err}$ small

Setup of Telescope for X_0 measurements

- Setup DESY test beam in March 2015
- Spacings chosen this way to keep the angle reco error $\sigma_{\rm err}$ small
- Beam energy between 2 and 5 GeV and large rate → Mainly results from 4 GeV data here

Image: Image:

Setup of Telescope for X_0 measurements

- Setup DESY test beam in March 2015
- Spacings chosen this way to keep the angle reco error $\sigma_{\rm err}$ small
- Beam energy between 2 and 5 GeV and large rate → Mainly results from 4 GeV data here
- Measurements on 3x3 metal grid and DEPFET Dummy with switcher and balcony

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules University of Göttingen

Procedure of X/X_0 Measurements

Definition of λ

- Finite angle resolution on target plane \rightarrow gaussian with standard deviation of $\sigma_{\rm err}$ as resolution function on target
- Expected value $\sigma_{\rm err}$ is affected by systematical errors (slightly wrong m26 resolution, additional multiple scattering within telescope, etc)
- Introduce λ factor: calibrated angle reconstruction error $\sigma^*_{err} = \lambda \cdot \sigma_{err}$, λ should be close to 1.0

Definition of μ

calibrated beam energy $p^* = \mu \cdot p$, with λ , μ : calibration factors and p, $\sigma_{\rm err}$ expected values

Ulf Stolzenberg for the test beam team Update on X₀ imaging of Belle II modules Image: A match a ma

Procedure of X/X_0 Measurements

First step: Calibration on metal grid with Moliere model

• Reconstructed multiple scattering angle distribution given by

$$f_{
m reco} = f_{
m Moliere}\left(heta
ight) * rac{1}{\lambda\,\sigma_{
m err}\,\sqrt{2\pi}}\exp\left(-rac{1}{2}\left(rac{ heta}{\lambda\,\sigma_{
m err}}
ight)^2
ight)$$

- ${\it f}_{\rm Moliere}$ depends on many material and particle beam parameters and on μ
- Target with well known material profile allows λ,μ calibration
- Find λ, μ by simultaneous fit of reconstructed angle distributions

Second step: Measurement on materials

• Use these optimal factors in other X/X_0 measurements

University of Göttingen

Aluminum grid

- 0.2 mm thick aluminum layers, with different hole configurations
- taped to metal plate within telescope arms
- increase of material budget by 0.22 % per hole

Image: A math a math

Procedure of Toy study

- Simulate 12 angle distributions for different alu thickness on metal grid 200 times
- 75k tracks for each measurement area
- 4 GeV electrons, metal grid as on the previous slide
- Perform simultaneous fit on the different angle distributions
- Compare fitresults to simulation parameters (λ =1.02, μ =1.0)

Image: A math a math

< □ > < ---->

Ulf Stolzenberg for the test beam team

Update on X₀ imaging of Belle II modules

- center of lambda distribution at $\lambda = 1.02$
- Very small offset in μ distribution

Image: Image:

Ulf Stolzenberg for the test beam team

Update on X₀ imaging of Belle II modules

- center of lambda distribution at $\lambda = 1.02$
- Very small offset in μ distribution
- p value has uniform distribution

Image: Image:

 \rightarrow calibration of μ and λ with a uncertainty of below 1 permil possible

Selection of measurement areas

University of Göttingen

• Simultaneous fit of 12 multiple scattering angle distributions

Image: A math a math

University of Göttingen

Simultaneous fit of 12 1.0 mm alu 0.8 mm alu multiple scattering angle distributions • Fit results: $\lambda = 1.145 \pm 0.001$, $\mu = 1.020 \pm 0.001$ 6.... [rad 6.... frad 1.2 mm alu 1.4 mm alu Barat [rad]

- Simultaneous fit of 12 multiple scattering angle distributions
- Fit results: $\lambda = 1.145 \pm 0.001,$ $\mu = 1.020 \pm 0.001$
- μ close to 1.0, $\lambda \approx 1.1$ typical value at DESY

University of Göttingen

- Simultaneous fit of 12 multiple scattering angle distributions
- Fit results: $\lambda = 1.145 \pm 0.001$, $\mu = 1.020 \pm 0.001$
- μ close to 1.0, $\lambda \approx 1.1$ typical value at DESY
- beam energy 2 % larger than expected

Image: A match a ma

Measurements on DEPFET Dummy module

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q ()~.

Measurements on DEPFET Dummy module

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules University of Göttingen

Measurements on DEPFET Dummy module

grooves measurement results

Size of grooves (in u direction) \approx 0.6 mm X/X_0 difference between thinnest and thickest point \approx 0.4 %

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules University of Göttingen

Image: A matrix and a matrix

Measurements on DEPFET Dummy module

switcher X/X_0 estimation results

 $(X/X_0)_{
m switcher} pprox 0.3\%$, expected value: 0.35%

<ロ>

Ulf Stolzenberg for the test beam team

Update on X₀ imaging of Belle II modules

Measurements on DEPFET Dummy module: Bump bonds

Measurements on DEPFET Dummy module: Bump bonds

bump bond X/X_0 estimation results

Mean distance in u and v 150 μ m, $(X/X_0)_{\rm bump} \approx 0.9 \pm 0.2\%$, expected value: $\approx 0.7\%$

Conclusion and Outlook

Conclusion

- calibration of 4 GeV successful, $\lambda = 1.145 \pm 0.001,$ $\mu = 1.020 \pm 0.001$
- Switcher image based on 4 runs with 22 Mio tracks
- bump bond structures below switcher can be seen
- telescope z alignment still seems to be a minor issue

Image: A math a math

Conclusion and Outlook

Outlook

- Further systematical studies of alignment
- detailed measurements of the rest of the data, 2 GeV beam has a much larger rate → statistical errors will be much smaller in the near future

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules

11/12

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thanks for your attention!

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules University of Göttingen

Backup Slides

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules University of Göttingen

Image: A math a math

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits

Image: A match a ma

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor → hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed → maps
- Take MSC in air gaps into account

Ulf Stolzenberg for the test beam team

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed → maps
- Take MSC in air gaps into account
- θ_p calculated from (m_u, m_v)
- Reco error $\sigma_{\rm reco}$ from error propagation

Example of a reconstructed angle distribution

Composition of the Reco Distribution

Reconstructed MSC angle distribution is a convolution between the truth MSC distribution and a Gaussian noise distribution caused by the reconstruction errors

Ulf Stolzenberg for the test beam team

Update on X₀ imaging of Belle II modules

University of Göttingen

Measurements on Broken PXD module I

End-of-staves, 3 DHPs and parts of 3 DCDs visible

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules University of Göttingen

Image: A math a math

11/12

Measurements on Broken PXD module II

Image: A math a math

Ulf Stolzenberg for the test beam team Update on X₀ imaging of Belle II modules University of Göttingen

ated

Measurements on Broken PXD module II

Image: A math a math

Measurements on Broken PXD module II

・ロット (四)・ (川)・ (日)・

Discrimination between λ and μ

- depicted: total width as a function of thickness given by grid points
- points 10,11,12: whole thickness (1.8mm alu)
- p=4 GeV, $\sigma_{\rm err}$ =234 μ rad
- variation of λ , μ
- μ and λ clearly distinctive

Image: A match a ma

Discrimination between λ and μ

- depicted: total width as a function of thickness given by grid points
- points 10,11,12: whole thickness (1.8mm alu)
- p=4 GeV, $\sigma_{\rm err}$ =234 μ rad
- variation of λ , μ
- μ and λ clearly distinctive

Image: A math a math

Highland Formula

$$\sigma\left(X, \boldsymbol{p}^*\right) = \frac{0.0136 \cdot q[\boldsymbol{e}]}{\beta \cdot (\mu \cdot \boldsymbol{p}) \; [\text{GeV}]} \cdot \sqrt{\frac{X}{X_0}} \left(1 + 0.0038 \ln\left(\frac{X}{X_0}\right)\right)$$

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules

University of Göttingen

・ロト ・聞 ト ・ ヨト ・ ヨト

Angle distribution fits

Angle distribution fits

Ulf Stolzenberg for the test beam team Update on X_0 imaging of Belle II modules University of Göttingen

Image: A matrix and a matrix