VXD Alignment

Tadeáš Bilka Charles University in Prague

9-11 September 2015 Trieste, Italy

Overview

- The basf2 Calibration Framework
 - Status
 - Issues
 - Plans
- Alignment package
 - General Broken Lines Fit
 - Millepede Calibration Module
 - Global Status Overview
- VXD Alignment Test
- Questions/Requests
- Plans
- Conslusions

The basf2 Calibration Framework

- Status
 - Initial implementation of main features:
 - Dependencies, Iterations, Splitting of data collection and calibration/monitoring
 - Histogram/Tree management with standard basf2 (RootMergeable)
 - Not safe for e.g. "per run" calibrations:
- Issues
 - Histogram management (especially in parallel processing) with data from multiple runs

The basf2 Calibration Framework

- Plans
 - Possible solution to histogram/tree management tested
 - Calibration framework should adopt this soon
 - MillepedeCalibration module will adopt this first
 - Prepare a small tutorial "How to write and use calibration modules" for B2GM with evaluation of the interfaces (calibration developers have chance to make requests and present their use-cases)

Alignment Package

• General Broken Lines Fit

- Special treatment of multiple scattering (kink in tracks)
- Experiment independent implementation in GENFIT
- In basf2: GBLfit Module
- Supported sub-detectors in the fit: VXD, CDC, BKLM

- Millepede Calibration Module
 - Collects binary data from GBL fitted tracks and uses standalone Millepede II to find alignment/calibration parameters' corretions
 - Millepede: Global Chi2-minimization: all track and alignment parameters free and fitted simultaneously correlations kept
 - The more data and parameters (detectors) included, the more powerfull is the procedure
 - Full scale alignment/calibration not just with VXD (full control over cross-detector correlations)

Alignment Package

- Global Status Overview
 - Detector with Genfit/General Broken Lines interface
 - VXD, CDC in full operation, working fine
 - BKLM Currently small reconstruction bias being solved
 - Detectors with Millepede interface
 - VXD in full operation. 6 parameters per sensor, working fine
 - CDC tested axial layer alignment, simple drift velocity calibration, but not in svn
 - BKLM in test operation, 6 parameters per module, in svn
 - Reconstruction issues to be solved first
 - Fully included in calibration framework

VXD Alignment Test

- Full example in alignment/examples
 - generate_samples.sh (takes some hours) ... GenDST.py
 - calibrationFramework.py
- Sample
 - 100k particle gun events + 300k cosmic rays
 - Only about 100k cosmic muons pass selection:
 - 4 < # hits < 24
 - Fit success & p-value > 0.001 (ideal geometry)
- Fixed 6th SVD layer and all slanted SVD sensors
 - Not misaligned. Used as reference.
 - Slanted low statistics for cosmics & selection criteria

VXD Alignment Test

- Generated misalignment: random per each (non-fixed) sensor and param
 - u, v, w ... 100 micrometers
 - alpha, beta, gamma ... 1 mrad
- On following plots:
 - **Black** ideal geometry
 - **Blue** misaligned reconstruction geometry
 - **Red** reconstruction geometry after Millepede alignment (2nd iteration with complete refit)

```
misalignment – alignment = residual misalignment
```

Chi squared

U (R-Phi) Residuals [cm]

V (Z) Residuals [cm]

Vertex estimation in VXD [cm]

Momentum estimation in VXD [GeV/c2]

Residual Misalignment Shifts [um]

residual = input misalignment – computed alignment

w RMS=0.8um

u RMS=0.4um

0

residual*1e3

-0.1 -0.08 -0.06 -0.04 -0.02

0.02 0.04

0.06 0.08

residual*1e3

0

Residual Misalignment Pulls of all parameters

residual/error {error>0.}

Questions / Requests

- What is the possible initial misalignment?
 - How precisely are sensors mounted to ladders, ladders to layers, layers to support?
- What sub-structures should be considered
 - Are half-shelves mechanically independent?
- Survey measurements
 - Vital to alignment as (precise) external reference
 - What is planned?
 - Discussion how to interface e.g. laser measurements in-place (online) to Millepede alignment

Plans

- Calibration Framework
- Alignment/Calibration
 - Run(even intra) dependence in Millepede (initial implementation ready \rightarrow testbeam!!!)
 - Lorentz shift calibration in VXD (testbeam!!!)
 - Sensor deformations for VXD (2nd order) (testbeam?)
 - Hierarchy (for all detectors?) + constraints
 - CDC alignment & calibration
 - BKLM: add EKLM, solve reconstruction issues
 - J/Psi \rightarrow mumu in alignment

Conclusions

- We can already do quite good VXD alignment
 - (Still) ready for beam test
- We have four(!) different subdetectors interfacing Millepede alignment/calibration
 - PXD + SVD + CDC + BKLM
- We need (a lot of) contributions from sub-detectors
 - Parameters, misalignment/alignment, hierarchy, precisions and possible misalignment, database ...

Thank you for attention!