aDefectFinder Status

~ aDefectFinder-00-02-02 ~

outline

- ★ Review the Algorithm
- ★ User Inputs & Outputs
- ★ Upcoming Features
- ***** Conclusions

<u>Giulia Casarosa</u> INFN - Sezione di Pisa

8th VXD Workshop @ Trieste ~ September, 10th 2015

The Automatic Offline Analysis

- The goal is to provide a common tool to find (defect-list generator) and classify (defect classifier) the problematic strips found in the electrical tests performed with APVDAQ during the SVD assembly
- → The *deliverable* of the automatic defect finder (aDefectFinder) is:
 - the list of defective channels
 - a proposed pre-assigned classification of the detected defects in the list above
 - the relevant plots for each of the defect to assist the operator in the final decision
 - the cumulative plots of the good strips
- ➡ The analysis is performed in two steps:
 - 1. selection of the defective channels
 - 2. classification of the defective channels
 - based on the features of the single channel under study; informations from the adjacent channels are not used (their utilisation can be implemented if needed)

Step 1: defects selection

→ A strip is automatically listed as *problematic* if any of the following applies:

selection criteria	motivation	
Noise > 8 ADC	most of the defects show an abnormal higher noise	
CalAmp < 50 ADC CalTmax > 200 ADC	some defects show an abnormal APV response in terms of	
CalTmax < 100 ns CalTmax > 200 ns	gain and peaking time	
it is recognised as a pinhole (see next slide)	pinholes may have a normal noise, gain and peaking time at $Vsep = 0V$	
LaserResponse < 0.5	some defects show an abnormal response to radiation	

- → The selection criteria have been chosen studying SBW and SFW modules:
 - modules in different layers and/or positions may need different cuts (including additional selection - or classification - criteria!)
 - the cuts can be tuned by the operator changing the values in the file: aDefectFinder-00-02-02/default_config/selection.config

Pinholes Fingerprints

Different pinholes "types" have been discovered during SFW and SBW tests:

Sept 10th 2015

is-a-pinhole Criteria

Step 2: defects classification

Sept 10th 2015

```
Giulia Casarosa
```

Tagging Opens

It's very important to find the opens during the first electrical tests since they may be repaired

Configuration File

<pre>[module] name = SBWtest name of the object (L4.001, SB3.001,) tag = bw bosition in the ladder = {bwz.ce. +z.fw}</pre>	-	paths are relative to program
<pre>[input files] calibration = ./default_trees/default_cal_tree.root vsep = ./default_trees/default_cvs_tree.root </pre>		 use aDefectFinder relative paths to in example)
<pre>laserP = ./default_trees/default_laserP_tree.root laserN = ./default_trees/default_laserN_tree.root laser/radiation run</pre>		 use another folde and use absolute
[output files] rootfile = /results/SBWtest/SBWtest mergedTree root		file
<pre>csv_defects =/results/SBWtest/SBWtest_defects.csv pdf_summary =/results/SBWtest/SBWtest_summary.pdf</pre>	-	you can modify the s classification cuts
[Average Laser Response Cuts] count_min = 0 count_max = 3000	-	check the screen prin beginning of the exec
[Defect Finding Cuts] change this file to change		• included files have
include ./default_config/selection.config the selection cuts		• cuts are the ones
<pre>[Defect Classification Cuts] include ./default_config/classification.config the classification cuts</pre>	ge	 the module has be recognised (# stri
<pre>[Electrical Defects Analysis] output =/results/SBWtest/SBWtest_electrical_defects.csv include ./default_config/electrical_defects_without_sensor.config</pre>		in the near future the configuration
<pre>[Package Version] include ./default_config/package_version.config</pre>		provided and will on the path and inclusion
		selection/classificati

where you run the

r location and use it (as in the

- er (e.g. data folder) paths in the config
- election and
- ntout right at the cution to check if:
 - e been found
 - you expect
 - een correctly ips,...)

a tool to create n file will be automatically set lude the proper ion files

The Output Files (1)

summary of cuts, input/output files

SBW006_bw Offline Analysis Results

[input files]

calibration = ../data/2015_08_03/SBW006_cal_20150803_1525.root vsep scan = ../data/2015_08_03/SBW006_cvs_20150803_1528.root laser P-side = ../data/2015_08_03/SBW00620150803_1549_001.root laser N-side = ../data/2015_08_03/SBW00620150803_1604_002.root

[selection criteria]

Noise > 8.0 CalAmp < 50.0 || CalAmp > 150.0 CalTmax < 100.0 || CalTmax > 200.0 abs(LaserResponse - 1) > 0.5 is-a-pinhole criteria

[classification criteria]

Pinhole: - abs(average_LR - max_C) > 20.0

- abs(average_L - max_C) > 20.0

Short: average(Mean) < 50.0

Open: Noise > 80.0

[output files]

root file = ../results/SBW006/SBW006_mergedTree.root

csv file = ../results/SBW006/SBW006_defects.csv

pdf file = ../results/SBW006/SBW006_summary.pdf

package version: aDefectFinder-00-02-02

The Output Files (2)

old-style plots of the relevant variables

Sept 10th 2015

Giulia Casarosa

10

The Output Files (3)

relevant plots for each defects and the adjacent strips

Sept 10th 2015

summary of the

characteristics of the

problematic strip and of

The Output Files (4)

cumulative plots of <u>the</u> good strips

The Features Under Development

- I. Automatic Configuration File
 - a tool that automatically creates the configuration file is under development by a student in HEPHY (Daniel Lukic)
- 2. Automatic comparison of the defects found during the electrical test and the defects declared on the sensor
 - minimum deliverable is the list of matched defects and the list of channels that are found only in one test (sensor or electrical).
 - format of the files to be compared is under finalisation
 - format of the output file is under discussion:
 - it depends on the level of comparison that we want
 - it depends on what we want to do with it (e.g.: count the matched defects, build a statistics, ...)
 - input and output files should be uploaded/downloaded from the database

Conclusions

- aDefectFinder-00-02-02 is available at:
 - <u>https://belle2.cc.kek.jp/svn/groups/svd/aDefectFinder-tags/</u> <u>aDefectFinder-00-02-02/</u>
 - more information on the installation, compilation and usage in the README file; more information in a Twiki page to be created very soon.
- aDefectFinder is still under development but it already provides useful informations for APVDAQ users
- Feedbacks from the users is fundamental to improve the performances of the algorithm (giulia.casarosa@pi.infn.it)
- → Additional features will be implemented soon in order to simplify the user life.

APVDAQ Calibration Run

- 600 events randomly triggered to evaluate Noise, RawNoise and Pedestal for each channel
- fixed ΔV injected on the capacitance of the APV injection circuit of all channels, sampling of the response curve of 16 strips at a time (8 groups, strips i+8j with j = 0to 16 are in the ith group)

Response Curve

- The maximum amplitude (CalAmp) and the peaking time (CalTmax) are <u>extracted with a fit to the curve</u>
- WARNING: in channels with very high noise (>50 ADC) the fit can fail and return crazy values → look at the response curve for that channel
- Temperature effect: the hybrids heat up when DAQ is running (up to ~100°C). The performance decrease with temperature:
 - decrease of CalAmp
 - increase of CalTmax

APVDAQ Vsep Scan

Laser Scan

The subassembly (N-side up) is placed on the plexiglass support (fixed to the box) that provides a good alignment

I. apply the bias, $V_{\text{bias}} = 100V$, $V_{\text{sep}} = -0.75V$ in case of pinholes, $V_{\text{sep}} = 0V$ otherwise

2. two Hardware Runs, APVDAQ (external trigger for the laser pulse and the APVDAQ)

- scan of the N strips (~10 minutes, 1500 hits per strip on average):
 - move the laser at a constant speed ~orthogonal to the N strips, away from PA if possible.

- scan of the P strips (~10 minutes, 1500 hits per strip on average):
 - move the laser at a constant speed ~orthogonal to the P strips, away from PA if possible.

NOTE: before each scan we take 600 events randomly triggered to evaluate Noise, RawNoise and Pedestal for each channel

Opens Fingerprint

- same behaviour if the open is on the sensor or on the APV side
- very high Noise (high noise also on the 2+2 adjacent strips)
- Normal CalAmp and CalTmax but the fit to the response curve may converge to crazy values
 → look at the response curve to evaluate "by eye" if the gain is normal or low
- Laser Response:
 - affected by the high noise
 - the 2+2 nearby strips have a lower response to radiation because of their higher noise

note: strips are indicated with the convention (APVchip, APVchannel)

Sept 10th 2015

Shorts Fingerprint

- shorts consist in at least two adjacent strips
- Lower CalAmp and longer CalTmax, usually the fit to the curve converges, but it's always better to check the values of CalAmp and CalTmax looking at the response curve
- high Noise
- Laser Response:
 - affected by the lower gain

Pinholes Fingerprint

- Lower CalAmp and longer CalTmax at Vsep = 0V
- Gain (partially) recovered at Vsep = -0.75V
- in some cases slightly higher Noise at Vsep = 0V, higher noise for Vsep<0.75V
- Laser Response:
 - affected by the lower gain

note: some pinholes may have a
normal behaviour at Vsep = 0V

Gain Evaluation

- For strips with very high noise, the CalAmp value is not always reliable since the fit to the response curve may converge to crazy values → the CalAmp value can not be used to classify the defect
- Let's use the average of Mean over the different Vsep to estimate CalAmp:

$$average(Mean) = \frac{\Sigma_{Vsep}^{N'}Mean(Vsep)}{N'}$$

Mean and RMS from Vsep Scan

Giulia Casarosa

Noise [ADC]