Dark Matter (and Dark Mediators) at the LHC





David Šálek

30/11/2015

## DM production at the LHC







## DM production at the LHC



## multi-jet background

Eur. Phys. J. C (2015) 75:299

- Multi-jet events are the most abundant processes at the LHC.
- Mis-balanced multi-jet events, where a jet is mis-reconstructed, may lead to MET in the direction of the jet.



## beam-induced backgrounds



David Šálek: Dark Matter (and Dark Mediators) at the LHC



## Non-collision backgrounds

EXOT-2015-005



- Non-collision backgrounds are suppressed by jet quality requirements to sub-percent level in the mono-jet analysis.
  - beam-induced backgrounds (with typical azimuthal signature)
  - cosmic muons

### ATLAS-CONF-2015-029

30/11/2015

### Eur. Phys. J. C (2015) 75:299

## Event selection and backgrounds

|                                                                                                                                                          |                      |                           | Select     | ion criteria | L          |            |            |            |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|------------|--------------|------------|------------|------------|------------|------------|
|                                                                                                                                                          |                      |                           | Pre        | selection    |            |            |            |            |            |
| Primary vertex<br>$E_{\rm T}^{\rm miss} > 150 \text{ GeV}$<br>Jet quality requirements<br>At least one jet with $p_{\rm T}$<br>Lepton and isolated trace | 5 > 30  GeVck vetoes | and $ \eta  < 4$          | 1.5        |              |            |            |            |            |            |
|                                                                                                                                                          |                      |                           | Monojet    | -like select | ion        |            |            |            |            |
| The leading jet with $p_{\rm T}$<br>Leading jet $p_{\rm T}/E_{\rm T}^{\rm miss} > \Delta \phi({\rm jet}, {\bf p}_{\rm T}^{\rm miss}) > 1.0$              | > 120 GeV<br>0.5     | $\gamma$ and $ \eta  < 1$ | 2.0        |              |            |            |            |            |            |
| Signal region<br>Minimum $E_{\rm T}^{\rm miss}$ [GeV]                                                                                                    | SR1<br>150           | SR2<br>200                | SR3<br>250 | SR4<br>300   | SR5<br>350 | SR6<br>400 | SR7<br>500 | SR8<br>600 | SR9<br>700 |

| Background process                                                                                                              | Method                                                                                             | Control sample                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Z(\rightarrow \nu \bar{\nu}) + jets$ $W(\rightarrow e\nu) + jets$ $W(\rightarrow \tau \nu) + jets$ $W(\rightarrow \nu) + jets$ | MC and control samples in data<br>MC and control samples in data<br>MC and control samples in data | $Z/\gamma^*(\to \ell^+ \ell^-), W(\to \ell\nu) \ (\ell = e, \mu)$ $W(\to e\nu) \ (\text{loose})$ $W(\to e\nu) \ (\text{loose})$ $W(\to e\nu) \ (\text{loose})$ |
| $W (\rightarrow \mu \nu) + \text{jets}$                                                                                         | MC and control samples in data                                                                     | $W (\rightarrow \mu \nu)$                                                                                                                                      |
| $Z/\gamma^*(\rightarrow \ell^+ \ell^-)$ +jets $(\ell = e, \mu, \tau)$<br>$t\bar{t}$ , single top                                | MC-only<br>MC-only                                                                                 |                                                                                                                                                                |
| Diboson                                                                                                                         | MC-only                                                                                            |                                                                                                                                                                |
| Multijets                                                                                                                       | data-driven                                                                                        |                                                                                                                                                                |
| Non-collision                                                                                                                   | data-driven                                                                                        |                                                                                                                                                                |

#### David Šálek: Dark Matter (and Dark Mediators) at the LHC

#### Eur. Phys. J. C (2015) 75:299

## V+jets background



$$N_{\text{signal}}^{W(\to\mu\nu),\text{control}} = \frac{\left(N_{W(\to\mu\nu),\text{control}}^{\text{data}} - N_{W(\to\mu\nu),\text{control}}^{\text{non}-W/Z}\right)}{N_{W(\to\mu\nu),\text{control}}^{\text{MC}}} \times N_{\text{signal}}^{\text{MC}(W(\to\mu\nu))} \times \xi_{\ell} \times \xi_{\text{trg}} \times \xi_{\ell}^{\text{veto}}$$

#### David Šálek: Dark Matter (and Dark Mediators) at the LHC



30/11/2015 10<sup>2</sup>

1<sub>\*</sub>=670 GeV

ēν

David Šálek: Dark Matter (and Dark Mediators) at the LHC

10

## limits on $\sigma \times A \times \epsilon$

|               | Upper limits on $\sigma \times A \times \epsilon$ [fb] |                            |
|---------------|--------------------------------------------------------|----------------------------|
| Signal Region | 90% CL Observed (Expected)                             | 95% CL Observed (Expected) |
| SR1           | 599 (788)                                              | 726 (935)                  |
| SR2           | 158 (229)                                              | 194 (271)                  |
| SR3           | 74 (89)                                                | 90 (106)                   |
| SR4           | 38 (43)                                                | 45 (51)                    |
| SR5           | 17(24)                                                 | 21 (29)                    |
| SR6           | 10 (14)                                                | 12(17)                     |
| SR7           | 6.0(6.0)                                               | 7.2(7.2)                   |
| SR8           | 3.2(3.0)                                               | 3.8(3.6)                   |
| SR9           | 2.9(1.5)                                               | 3.4 (1.8)                  |

## Dark Matter EFT operators

• Contact interactions (dimension-6 operator) form a simple framework for the description of the collider and astro-particle experimental results and were widely used in Run-1 by both ATLAS and CMS.



## 1008.1783

30/11/2015

David Šálek: Dark Matter (and Dark Mediators) at the LHC



- It is safe to use EFT when the mediator can be integrated out.
- However, at the LHC energies, the limits on the suppression scale are comparable to the momentum transfer!



David Šálek: Dark Matter (and Dark Mediators) at the LHC

## EFT validity





David Šálek: Dark Matter (and Dark Mediators) at the LHC



# EFT validity



10/11/2015

David Šálek: Dark Matter (and Dark Mediators) at the LHC

# D<sup>1</sup> WMP mass n <sup>10<sup>3</sup></sup> C <sup>10</sup> <sup>10</sup> <sup>10</sup> <sup>10</sup> <sup>10</sup> <sup>10<sup>2</sup></sup> <sup>10<sup>3</sup></sup> WMP mass m<sub>χ</sub> [GeV]





8 TeV 20.3 fb<sup>-1</sup>

### **Event selection**

- large R=1.2 Cambridge-Aachen jet pT > 250 GeV,  $|\eta| < 1.2$ , 50 < m < 120 GeV,  $\sqrt{y} > 0.4$
- at most one extra light jet  $pT > 40 \text{ GeV}, |\eta| < 4.5$ away from the fat jet (dR > 0.9) and MET (d $\phi$  > 0.4)
- lepton and photon veto (pT > 10 GeV)
- SR defined by MET > 350, 500 GeV
- Dominant backgrounds
  - Zvv+jets,W/Z from CR (inverted muon veto)

## Uncertainties

- limited CR statistics
- MC theory uncertainties
- C-A jet energy scale/resolution
- total uncertainty 7-13%





- Sensitive to the sign of the DM couplings to up and down quarks.
  - C(u) = C(d) destructive interference
  - C(u) = -C(d) constructive interference
- Order of magnitude improvement on the WIMP-nucleon cross section limits.
  - $M^* > \sim 2 \text{ TeV}$  for D5 constructive mode.



• However, other than C(u) = C(d) violates the gauge invariance.

David Šálek: Dark Matter (and Dark Mediators) at the LHC

## spin-l mediator in s-channel



- Dirac Dark Matter
- universal quark coupling
- U(I) gauge symmetry
- minimal mediator width

$$\mathcal{L}_{\text{vector}} = g_{q} \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q + g_{\chi} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$$
$$\mathcal{L}_{\text{axial-vector}} = g_{q} \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma^{5} q + g_{\chi} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi.$$

• 4 free parameters  $\{g_q, g_\chi, m_\chi, M_{med},\}$ 



David Šálek: Dark Matter (and Dark Mediators)

## Minimal Simplified

9<sub>q</sub>,9<sub>DM</sub>

 $g_q, g_{DM}$ 

0.8

1.2

1.0

- SI cross-section is enhanced by A<sup>2</sup> for a vector mediator.
- Cross section for DD scales by  $g_q^2 g_{DM}^2 / M_{med}^4$



 Mono-jet search is able to break this degeneracy, since the mediator width is not symmetric in g<sub>q</sub> and g<sub>DM</sub>

 $\Gamma_{\rm med} \propto 18g_q^2 + g_{\rm DM}^2$ 



0.50 1.00

0.0└─ 0.0

0.5

1.0

 $g_q$ 

0.01 0.02

0.05 0.10 0.20

 $g_q$ 

100

0.0

0.2

0.4

0.6

1.5

1407.8257

<u>er</u>models

## **EFT** limitations

- EFT overstates the limit at low M<sub>med</sub> or large m<sub>DM</sub> as the suppressed off-shell mediator production is not taken into account.
- The underlying coupling structure is not resolved by EFT.



## spin-0 mediator in s-channel



- Dirac Dark Matter
- Minimal Flavour Violation
- mediator is pure singlet  $\rightarrow$  not invariant under SU(2)L  $\rightarrow$  one could add mixing with H sector (but this is beyond the scope of the DM Forum)
- minimal mediator width

• **4 free parameters**  
$$\left\{m_{\chi}, m_{\phi/a} = M_{\text{med}}, g_{\chi}, g_{q}\right\}$$

10/11/2015

$$\mathcal{L}_{\phi} = g_{\chi}\phi\bar{\chi}\chi + \frac{\phi}{\sqrt{2}}\sum_{i} \left(g_{u}y_{i}^{u}\bar{u}_{i}\underline{u}_{i} + g_{d}y_{i}^{d}\bar{d}_{i}d_{i} + g_{\ell}y_{i}^{\ell}\bar{\ell}_{i}\ell_{i}\right),$$

$$\mathcal{L}_{a} = ig_{\chi}a\bar{\chi}\gamma_{5}\chi + \frac{ia}{\sqrt{2}}\sum_{i} \left(g_{u}y_{i}^{u}\bar{\mu}_{i}\gamma_{5}u_{i} + g_{d}y_{i}^{d}\bar{d}_{i}\gamma_{5}d_{i} + g_{\ell}y_{i}^{\ell}\bar{\ell}_{i}\gamma_{5}d_{i}\right),$$

$$g_{\ell}y_{i}^{\ell}\bar{\ell}_{i}\gamma_{5}\ell_{i}\right).$$

$$\mathbf{D}_{avid}$$

$$\mathbf{X}_{avid}$$

$$\mathbf$$

$$\begin{split} \Gamma_{\phi,a} &= \sum_{f} N_{c} \frac{y_{f}^{2} g_{q}^{2} m_{\phi,a}}{16\pi} \left( 1 - \frac{4m_{f}^{2}}{m_{\phi,a}^{2}} \right)^{x/2} + \frac{g_{\chi}^{2} m_{\phi,a}}{8\pi} \left( 1 - \frac{4m_{\chi}^{2}}{m_{\phi,a}^{2}} \right)^{x/2} \\ &+ \frac{\alpha_{s}^{2} y_{t}^{2} g_{q}^{2} m_{\phi,a}^{3}}{32\pi^{3} v^{2}} \left| f_{\phi,a} \left( \frac{4m_{t}^{2}}{m_{\phi,a}^{2}} \right) \right|^{2} \end{split}$$





## scan over DM mass

- on-shell (2mDM << mMed):</li>
  - Kinematic distributions do not strongly depend on the DM mass.
- threshold (2mDM ~ mMed):
  - The production is resonantly enhanced and both cross section and kinematic shapes change rapidly. → finer granularity needed
- off-shell (2mDM >> mDM):
  - MET spectrum hardens with increasing DM mass and the cross section is suppressed.



## scan over mediator mass

 At fixed DM mass, the mediator mass has a significant impact on kinematics and cross section for the on-shell DM production region.

• Shapes of kinematic distributions do not change in the off-shell regime.





## spin structure



# proposed mass grius

- We choose gSM=0.25 and gDM=1 for V and A in order to suppress interplay between mono-jet and di-jet constraints. → Such coupling choice leads to Γ/M < 0.06 (contrary to Γ/M ~ 0.5 for gSM=gDM=1)
- For S and P, di-jet signatures come from 2-loop diagrams, therefore we stay with gSM=gDM=1.  $\rightarrow$  Such coupling choice leads to  $\Gamma/M < 0.1$
- Choice of the highest mediator mass is motivated by the sensitivity of the early Run-2 data.
- 10 TeV mediator is added to resemble EFT.
- The grid is optimised based on the dependencies studied in the scans over the couplings presented in the DM Forum writeup (and on previous slides).

#### vector and axial-vector

| $m_{\chi}$ / GeV |    | $M_{\rm med}/{ m GeV}$ |    |     |     |     |     |      |      |       |
|------------------|----|------------------------|----|-----|-----|-----|-----|------|------|-------|
| 1                | 10 | 20                     | 50 | 100 | 200 | 300 | 500 | 1000 | 2000 | 10000 |
| 10               | 10 | 15                     | 50 | 100 |     |     |     |      |      | 10000 |
| 50               | 10 |                        | 50 | 95  | 200 | 300 |     |      |      | 10000 |
| 150              | 10 |                        |    |     | 200 | 295 | 500 | 1000 |      | 10000 |
| 500              | 10 |                        |    |     |     |     | 500 | 995  | 2000 | 10000 |
| 1000             | 10 |                        |    |     |     |     |     | 1000 | 1995 | 10000 |

#### scalar and pseudo-scalar

|                  |    |    |    | •   |               |       |     |      |       |
|------------------|----|----|----|-----|---------------|-------|-----|------|-------|
| $m_{\chi}$ (GeV) |    |    |    |     | $M_{\rm med}$ | (GeV) | )   |      |       |
| 1                | 10 | 20 | 50 | 100 | 200           | 300   | 500 | 1000 | 10000 |
| 10               | 10 | 15 | 50 | 100 |               |       |     |      | 10000 |
| 50               | 10 |    | 50 | 95  | 200           | 300   |     |      | 10000 |
| 150              | 10 |    |    |     | 200           | 295   | 500 | 1000 | 10000 |
| 500              | 10 |    |    |     |               |       | 500 | 995  | 10000 |
| 1000             | 10 |    |    |     |               |       |     | 1000 | 10000 |

10/11/2015

David Šálek: Dark Matter (and Dark Mediators) at the LHC

1507.00966

1200

1000

E<sup>miss</sup><sub>T</sub> [GeV]



- using only the following points:
  - g = 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5 for V/A
  - g = 0.1, 1, 2, 3 for S/P

0.7

0.6

\_0.5

2

3

4

5

6

 $\mathbf{g}_{\mathrm{SM}}$ 



 It also leads to substantial reduction in the dependence on the choice of the renormalisation and factorisation scales.





<u>hep-ph/9906349</u> 1502.04358

30/11/2015

David Šálek: Dark Matter (and Dark Mediators) at the LHC

# Searching for new mediators



- DM annihilation
- spin-dependent or spin-independent DM-nucleon scattering
- mono-jet production at the LHC
- di-jet production at the LHC



1503.05916

1503.05916

## Complementarity

- The region where DM is under-produced is allowed (other DM candidates from the dark sector can contribute).
- Local density ρ scales with the relic abundance, which scales with the inverse of the annihilation cross section.

$$\Omega_{\rm DSP} \propto \frac{1}{\langle \sigma v \rangle} \propto g^{-4}$$

- Collider searches for missing energy: Rate  $\propto \sigma \propto g^4$  .
- Direct detection: Rate  $\propto (\sigma \times \rho) \propto g^0$  .
- Indirect detection: Rate  $\propto (\sigma \times \rho^2) \propto g^{-4}$ .



# (associated) di-jet analysis

- For large couplings, the usual searches for narrow resonances no longer apply.
- The multi-jet background limits the LHC searches for mediators below I TeV.
  - associated di-jet production
  - trigger-level analysis



## mono-jet and di-jet @ 8 TeV



10/11/2015

David Šálek: Dark Matter (and Dark Mediators) at the LHC

## future prospects



- LHC will probe mediator masses up to 4 TeV and DM masses up to 1 TeV.
- Searches for dijet resonances in association with SM gauge bosons will significantly gain in sensitivity.
- XENONIT and LZ will improve the sensitivity of the direct detection.

1503.05916

1503.02931

1502.00855

## VBF $H \rightarrow invisible$





## VBF $H \rightarrow invisible$

8 TeV 20.3 fb<sup>-1</sup>

| Requirement                              | SR1                           | SR2a                           | SR2b                           |  |  |
|------------------------------------------|-------------------------------|--------------------------------|--------------------------------|--|--|
| Leading Jet $p_{\rm T}$                  | >75 GeV                       | >120 GeV                       | >120 GeV                       |  |  |
| Leading Jet Charge Fraction              | N/A                           | >10%                           | >10%                           |  |  |
| Second Jet $p_{\rm T}$                   | >50 GeV                       | >35 GeV                        | >35 GeV                        |  |  |
| $m_{jj}$                                 | >1 TeV                        | $0.5 < m_{jj} < 1 \text{ TeV}$ | > 1 TeV                        |  |  |
| $\eta_{j1} 	imes \eta_{j2}$              | <0                            |                                |                                |  |  |
| $ \Delta \eta_{jj} $                     | >4.8                          | >3                             | $3 <  \Delta \eta_{jj}  < 4.8$ |  |  |
| $ \Delta \phi_{jj} $                     | <2.5                          | N/A                            |                                |  |  |
| Third Jet Veto $p_{\rm T}$ Threshold     |                               | 30 GeV                         |                                |  |  |
| $ \Delta \phi_{j,E_{	au}^{	ext{miss}}} $ | >1.6 for $j_1$ , >1 otherwise | >0.:                           | 5                              |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$         | >150 GeV                      | >200 0                         | GeV                            |  |  |



| Signal region                   | SR1          | SR2a          | SR2b         |
|---------------------------------|--------------|---------------|--------------|
| Process                         |              |               |              |
| ggF signal                      | $20 \pm 15$  | 58± 22        | 19± 8        |
| VBF signal                      | $286 \pm 57$ | $182 \pm 19$  | $105 \pm 15$ |
| $Z(\rightarrow \nu\nu)$ +jets   | $339 \pm 37$ | $1580 \pm 90$ | 335±23       |
| $W(\rightarrow \ell \nu)$ +jets | $235 \pm 42$ | $1010 \pm 50$ | 225±16       |
| Multijet                        | $2\pm 2$     | $20 \pm 20$   | $4\pm4$      |
| Other backgrounds               | 1±0.4        | 64± 9         | $19\pm 6$    |
| Total background                | $577 \pm 62$ | 2680±130      | 583±34       |
| Data                            | 539          | 2654          | 636          |

| $\Gamma_{H}^{\text{inv}} = \frac{\text{BF}(H \to \text{invisible})}{1 - \text{BF}(H \to \text{invisible})} \times \Gamma_{H}$ |          |             |            |          |            |          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------|-------------|------------|----------|------------|----------|--|--|--|
| Results                                                                                                                       | Expected | +1 $\sigma$ | $-1\sigma$ | +2\sigma | $-2\sigma$ | Observed |  |  |  |
| SR1                                                                                                                           | 0.35     | 0.49        | 0.25       | 0.67     | 0.19       | 0.30     |  |  |  |
| SR2                                                                                                                           | 0.60     | 0.85        | 0.43       | 1.18     | 0.32       | 0.83     |  |  |  |
| <b>Combined Results</b>                                                                                                       | 0.31     | 0.44        | 0.23       | 0.60     | 0.17       | 0.28     |  |  |  |

## Higgs portal DM



508.07869

1112.3299

## summary

- EFT was chosen to interpret DM searches in Run-I
- DM Forum prepared recommendations for simplified models for early Run-2 analyses
   <u>1507.00966</u>
- Recent developments in generators allow for more precise modelling.
- richer phenomenology, complementarity, new interpretations
- DM working group under LPCC <u>https://lpcc.web.cern.ch/lpcc/index.php?page=dm\_wg</u>
- <u>DM@LHC workshop</u> in Amsterdam, 30/03 01/04 (to be announced soon)
  - new Run-2 results
  - complementarity of DM searches

## extra material

# 14 TeV projections

| $Zh \rightarrow II + MET$ analysis | BR( $H \rightarrow inv.$ ) limits at 95% (90%) CL | 300 fb <sup>-1</sup> | $3000 \text{ fb}^{-1}$ |
|------------------------------------|---------------------------------------------------|----------------------|------------------------|
|                                    | Realistic scenario                                | 23% (19%)            | 8.0% (6.7%)            |
|                                    | Conservative scenario                             | 32% (27%)            | 16% (13%)              |



| • coupling fit                        | Nr.        | Parameter          | $300 \text{ fb}^{-1}$ |                           |                | 3000 fb <sup>-1</sup> |                   |        |  |
|---------------------------------------|------------|--------------------|-----------------------|---------------------------|----------------|-----------------------|-------------------|--------|--|
|                                       |            |                    |                       | neory uno                 | C.:            | Tl                    | heory und         | 2.:    |  |
| $(without Zn \rightarrow II + I'IEI)$ |            |                    | All                   | Half                      | None           | All                   | Half              | None   |  |
| -                                     | 1          | К <sub>g</sub>     | 7.5%                  | 5.9%                      | 5.2%           | 3.5%                  | 2.9%              | 2.6%   |  |
|                                       |            | κ <sub>γ</sub>     | 9.3%                  | 6.2%                      | 4.8%           | 5.2%                  | 3.0%              | 1.7%   |  |
|                                       |            | $\kappa_{Z\gamma}$ | 78%                   | 78%                       | 78%            | 30%                   | 29%               | 29%    |  |
|                                       |            | RD.                | -780%                 | ~7K0%                     | <b>~</b> 750%  | <b>~15</b> 0%         | ~120%             | ~170mg |  |
| 10/11/2015                            | 90% CL), s | calar              |                       | <b><i>TLAS</i></b> Simula | tion Prelimina | ary ····Expecte       | ed (90% CL), scal | ar     |  |

ATL-PHYS-PUB-2013-014

ATL-PHYS-PUB-2013-015

# mono-jet prospects @ 14 TeV

### ATL-PHYS-PUB-2014-007

### **Event selection**

- leading jet pT > 300 GeV
- Δφ(jet, MET) > 0.5
- electron and muon veto
- at most two jets
  - pT > 30 GeV @ 8 TeV
  - pT > 50 GeV @ 14 TeV
- SR defined by MET > 400, 600, 800 GeV

Backgrounds

• pure MC study

### Systematic uncertainties

- 5% reasonable expectation for early Run-II
- 1% ultimate goal for HL-LHC



# mono-jet prospects @ 14 TeV

ATL-PHYS-PUB-2014-007

- Already first data from Run-II will bring improvements in sensitivity to DM.
  - Exclusion limits can be improved by factor of 2 with first few fb<sup>-1</sup>.
  - $5\sigma$  discovery potential for M\* ~ 1.7 TeV with 300 fb<sup>-1</sup>.

