DarkSide: recent results with underground argon and outlook

Davide Franco APC on behalf of the DarkSide Collaboration

Prospects in Low Mass Dark Matter 30th November and 1st December 2015 MPI-P Munich

- WIMP dark matter search using direct detection
- Dual-phase Liquid Argon Time Projection Chamber (LAr TPC)
- Ultra low background
 - Deep underground (LNGS)
 - Low-background materials, including Ar target
- Active neutron and muon vetoes
 - in situ background measurement
- Powerful background rejection
 - Pulse shape discrimination (PSD)
 - Ionization to scintillation ratio (S2/S1)
 - Surface rejection using 3D position reconstruction
 - Multiple scatter event rejection

Dual-Phase Liquid Argon TPC

Discrimination Power

Davide Franco – APC Paris

Discrimination Power

DarkSide Phys. Lett. B 743 (2015)

Benetti et al. (WARP) 2006

The DarkSide Program

DarkSide-10	DarkSide-50	DarkSide-20k	ARGO
2011-2013	2013-2016	2020-2025	2025-2030
10 kg	150 kg	30 ton	150 ton
	50 kg FM	20 ton FM	100 ton FM
	<image/> <section-header></section-header>	<image/>	"neutrino floor" ~10 ⁻⁴⁸ cm ²

DarkSide-50

The TPC

- 50 kg active mass of UAr
- 19 top + 19 bottom R11065 HQE 3'' PMTs
- 36 cm height, 36 cm diameter
- Low field of 0.2 kV/cm drift
- Lateral walls covered by high reflectivity PTFE
- Cold pre-amps
- 2.8 kV extraction field

DarkSide-50

Liquid Scintillator Veto (against neutrons)

- 4 m diameter sphere
- **30 tonne** of boron-loaded scintillator (PC+PPO+TMB)
- 110 8" PMTs
- LY ~ 500 pe/MeV

Cherenkov Water Detector

- 11 m diam. x 10 m
- 1000 tonne water Cherenkov detector
- 80 PMTs

The Detectors

The ³⁹Ar Issue Before DS50

	Total Rate [mBq /100 keV]	Estimated BG Rate [mBq/100keV]	BG Subtracted Rate [mBq/100keV]
Atmospheric Argon	108.8 ± 0.4	1.5 ± 0.2	107.2 ± 1.9
Underground Argon	1.87 ± 0.06	1.5 ± 0.2	0.32 ± 0.23
³⁹ Ar Suppression Factor	58.2 ± 1.9		> 153 (95%)

arXiv:1204.60111

Depletion Factor > 150

Internal Calibrations

Atmospheric argon: ~1 Bq / kg of ³⁹Ar 1.5 x 10⁷ events in 47.1 days Q-value = 565 keV

Injected gaseous ^{83m}Kr E = 41.5 keV

Average Light Yield: ~7.9 pe/keV at null field ~7.0 pe/keV at 200 V/cm

Electron lifetime: ~10 ms

Maximum drift time in the TPC: **375** µs at 200 V/cm Drift velocity **0.93 mm/µs**

Nuclear Recoil Energy Scale

SCENE

Scintillation Efficiency of Nuclear Recoils in Noble Elements

Neutron calibration in large detectors affected by neutron multiple scatterings

SCENE has collected extremely **pure samples of single nuclear recoils** in a small scale TPC

External Calibrations

External Calibrations

Gamma sources: ⁵⁷Co (122 keV), ¹³³Ba (356 keV), ¹³⁷Cs (663 keV)

Full **MC** description of all the DS detectors, including:

- Custom-made ionization, excitation, and recombination model
- Full photon generation and tracking
- Optical tuning of the TPC: accuracy at a few percent level
- Nuclear quenching model

The Neutron Veto

The Neutron Veto

n + ¹⁰B
⁷Li (1015 keV) +
$$\alpha$$
 (1775 keV) (6.4%)
⁷Li* (839 keV) + α (1471 keV) (93.7%)
↓
⁷Li + γ (478 keV)

Neutron Veto Efficiency

Efficiency from capture signal alone at > 99% (from calibrations and simulations)

- ~0.6% of lost neutrons because of escaping proton capture gamma
- ~0.05% of neutrons leave no signal in LSV at all

Larger total efficiency due to thermalization signal

Cut at 1 PE threshold: ~0.9% acceptance loss

DS50 Timeline

- Oct 2013: LArTPC, Neutron Veto and Muon Veto commissioned
 - TPC filled with **atmospheric argon** (AAr)
- Up to June 2014: data taken with high ¹⁴C content in LSV
 - 47.1 live days (1422 kg day fiducial) for the first physics result
 - TMB (¹⁴C) was removed to reduce the ¹⁴C rate
- Oct to Dec 2014: Calibration of TPC with radioactive sources
- Jan 2015: Add radiopure TMB at 5% concentration
- Mar to Apr 2015: filling with underground argon (UAr) and recommissioning the detector
- Apr to Aug 2015: Accumulate data with UAr for dark matter search

Atmospheric Argon Run: the PSD

Underground Argon

1. Extraction at Colorado (CO₂ Well) Extract a crude argon gas mixture (Ar, N₂, and He)

2. Purification at Fermilab Separate Ar from He and N₂

3. Ship to LNGS Ready to fill into DS-50

The Underground Argon Run

The Underground Argon Run

The ⁸⁵Kr Contamination

99.57% BR via β (687 keV)

0.43% BR via β (173 keV) + delayed γ (514 keV) Coincidence mean time: ~**1.46** μ s

Deriving the small BR rate from the main branch:

35.3 ± 2.2 cpd 33.1 ± 0.9 cpd

Underground Argon Run: the PSD

Underground Argon Run: the PSD + S2/S1

WIMP Limits

DarkSide arXiv:1510.00702

Towards DarkSide-20k

Depleted Ar: the URANIA and ARIA projects

URANIA

Replacement of the Ar extraction plant in Colorado to reach capacity of **100 kg/day** of UAr

ARIA

Very tall distillation column in Seruci mine (Sardinia) for chemical and isotopic purification of UAr

Exploits finite vapor pressure difference between ³⁹Ar/ ⁴⁰Ar: ³⁹Ar reduction factor of 10 per pass at the rate of **100 kg/day**

DarkSide-20k

- Octagonal TPC (~3 m diamater ~3 m height)
- Target mass: 23 ton UAr
- Equipped with 15 m² of **SiPM:** more radio-pure, smaller total mass, higher efficiency
- Veto similar to the DS50 one
- Lol submitted in April
- Technical proposal under submission

all projected sensitivities are evaluated by assuming 0 bg

ARGO: the Solar Neutrino Channel

Goals:

- Observation of CNO neutrinos in 400 tonne year exposure (accuracy at ~15%)
- Metallicity solar models discrimination
- ⁷Be accuracy at 2%
- Pep accuracy at ~10%

Elastic Scattering

arXiv:1510.04196

³⁹Ar BG from **47.1 live days** (1422 kg day fiducial) of AAr corresponds to that expected in **38.7 years of UAr** DS-50 run

Concentration of ³⁹Ar in UAr is ~1400 times lower than in AAr

Pulse shape discrimination rejects ER with a factor larger than 1.5 x 107

Future detectors are planned:

Letter of Intent submitted to LNGS April 27 2015 Technical Proposal under submission to INFN and NSF

> DarkSide is demonstrating that a background free large volume LAr TPC is possible