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Introduction
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Detector

diffusion limited hits

Charged particles 
produce ionization 

in CCD bulk.

Charge 
collected by 
each pixel on 
CCD plane is 

read out.

3.62 eV for 
e-h pair.

~2 e- RMS read-out noise. 
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DM Motivation CCDs Particle detection Quenching DAMIC Near future Summary BACK UP

CCD: readout
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Scientific CCDs
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One readout gate - all pixels shifted via 
phased potential wells and read out

(now up to -675 μm)
2 e-

37 µs
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Particle response
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(This background is a CCD image)
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Particle identification in CCD
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1.5 mm

pixel size : 15 x 15  um2
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DAMIC first run
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DAMIC 2011
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~ 100 meters 
deep



DAMIC 2011

CCD Inside a  
cold Cu box 

Cylindrical  
Cu Dewar 

Lead Bucket
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Results from 2011 Run

DAMIC CRESST 2001

CoGent

DAMA/LIBRA 
Excess

CoGent

Xenon 100

• Wimp density            
➜ 0.3 GeV/cm 

• Vearth = 244 km/s 

• Vescape = 650 km/s
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Assumes Lindhard quenching factor 
for conservative limits

Data :  107 g*days

2011



Xenon 100
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Results from First Run

Phys. Lett. B
 711 (2012) 264-269
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DAMIC

Noise 2e- ➞ 0.2 e- 
5σ threshold ➞ 4 eV

Calibrations : 
determine ionization 
efficiency for low energy 
nuclear recoils

Improve detector 
materials & 
shielding 
radiopurity

Measure 
limiting 
impurities in 
silicon itself 

Deeper to 
Snolab

More massive 
CCDs

Stronger 
collaboration
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Performance

17
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CCD Performance

>95% of the image 
good quality.

CCDs are manufactured with very high resistivity silicon:
Low radioactive backgrounds.

Low dark current (0.01 e- / pix / day).
Very few (if any) defects in the silicon lattice.

6.7 eVee

RMS noise!

10794 images acquired over 
126 days. All good.

±6%



Response to electrons

 Al

Si

 O
 σ ≈ 21 eV 

 Energy loss in gates 
and SiO2 

< 2 µm / 675 µm

 Tritium 
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Diffusion of charge
• Size of hit depends on location within pixel

20

• Maximal (minimal) diffusion at bottom (top) of CCD

ie, muons

entering  
top of CCD

leaving bottom

V



Depth reconstruction
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Muon track

675 µm thick CCD 
   

front back
    
• Calibration with muon tracks (at 

ground level)  

    
• Diffusion model validated by 

muon and X-ray data  

Data (single muon track)
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Interactions can be simulated
• MCNPX simulation -> background model
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Uses diffusion 
model 
determined from 
muon tracks



R&D: background reduction 
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Ancient Lead
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Silicon radioimpurity 
32Si, 238U, 232Th 

24
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DAMIC unique spatial resolution
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E	  =	  5.4	  MeV E	  =	  6.8	  MeV E	  =	  8.8	  MeV

1 2 3

1
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Δt	  =	  17.8	  d Δt	  =	  5.5	  h
Three	  α	  at	  the	  same	  location!

	  α	  	  +	  β

Bragg	  
peak

Not	  seen

Example	  of	  

2015 JINST 10 P08014

Limits on contamination:
238U < 5 kg-1 d-1 = 4 ppt

232Th < 15 kg-1 d-1 = 43 ppt



Cosmogenic 32Si
    
• Must be demonstrated to be low for 

any Dark Matter search in silicon  
without electron rejection

≈ 100 kg-1 day-1 corresponds to 
≈1 dru at low energy! 

   
• Search for sequences of βs 

starting in the same pixel of 
the CCD in different images

2015 JINST 10 P08014
    
• Statistically limited, will be measured precisely by DAMIC100. 
 DAMIC unique spatial resolution and excellent duty cycle allows to reject 
this background (also other β-β sequences e.g. 210Pb)
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Low energy quenching factor
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Quenching factor

• Existing data 
points only go 
down to 4 KeV 

• Line shows 
Lindhard theory 
used by 
experiments

29
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Low energy neutron 
calibrations

• DAMIC collaborators have done two 
experiments to test Lindhard theorem 
below 4 KeV down to threshold 

• Antonella: Neutron scattering 
experiment 

• Photoneutron calibration

30
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Antonella

31
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GEANT simulation Data
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Antonella results

35



3.2 keVr 

end-point

124Sb-Be
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24 keV neutrons 
from 

9Be(γ,n) reaction

82

clearly demonstrates monochromatic neutrons peaking at 23.5 keV in the spectrum.

The tail in the lower energy range in the spectrum is due to neutron moderation by

BeO. The cross-section of 9Be(�, n) at 1.69 MeV is 1.64 mbar from xxxx measurement

in Figure 5.6. It shows that the e�ciency of neutron production with 135.8g of BeO

is 1.47e-4 in the simulations.

Figure 5.4: Setup geometry defined in the MCNP simulations viewed from the side.

The neutrons go through the stainless steel flange with a thinkness of 9/16” after

propagating in the lead. We use a 3He detector to measure the neutron fluxes around

the lead castle and around the CCD chamber to test the neutron propagation in

the lead and the 9Be(�, n) photonuclear cross-section in the simulations, shown in

Figure 5.7. 3He reacts by absorbing thermal neutrons, producing a 1H and a 3H ion.

Its sensitivity to � rays is negligible, and therefore providing a very useful neutron

detector. In order to moderate neutrons from BeSb to thermal neutrons, we put a

polyethylene cylinder 1-inch thick around the 3He detector. Figure 5.8 shows the flux

of neutrons before reaching polyethylene that are actually captured by 3He which

demonstrates that the detector with polyethylene is sensitive to neutrons peaked at

energy ⇠ 23 keV. We put a 6mm cadmium foil around the 3He detector to absorb

thermal neutrons in order to decrease their influences. Natural cadmium contains

12.22 % 113Cd with a cross-section of 104 barn in the thermal energy range. Historical

measurements with the 3He detector show a 10% uncertainty.

Figure 5.7 shows 17 measurement positions with the 3He detector. The spec-

Needed to stop γs

Photoneutron calibration



Data spectrum
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Observed spectrum

Normalized 
to count rate 

2-5 keVee.

Uncertainty 
propagated in 

analysis.
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89

Figure 5.13: Di↵erent source geometries, including ”Full BeO”, ”Outer BeO”, ”Inner
BeO”, ”Outer BeO Inner Al2O3”, and ”Poly”.

Source configuration

89

Figure 5.13: Di↵erent source geometries, including ”Full BeO”, ”Outer BeO”, ”Inner
BeO”, ”Outer BeO Inner Al2O3”, and ”Poly”.

89

Figure 5.13: Di↵erent source geometries, including ”Full BeO”, ”Outer BeO”, ”Inner
BeO”, ”Outer BeO Inner Al2O3”, and ”Poly”.

InnerAl
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Results

740±120 eVr at 60 eVee
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Two DAMIC calibrations

Covered entire DAMIC 
WIMP search ROI



DAMIC 2014:   R&D data 
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DAMIC100
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• 100 g detector, 18 CCD 4k x 4k 675 µm 
• Minimal changes in SNOLAB setup:      Cu 

box, CCD support and cable 
    expected bkg   ≈ 1 event keV-1 kg-1 day-1 
• Detectors designed by Lawrence Berkeley 

Lab and fabricated by DALSA, all in hand, 
packaging started, high yield 

• In the first half of 2015, installation of CCD 
box and background improvements: 

     - installation of N2 purge for radon 
     - etching of vacuum vessel to remove 
       surface bkg 
     - several CCDs (2k x 4k) 675 µm  
       packaged and installed to study bkg



Dark Matter in CCDs at SNOLAB
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20” thick poly 
shielding

vacuum and cryo 
lines,electronics

Cu vessel

Cu box

Kapton 
cable

in-vacuum 
electronics

 8” lead 
shielding

Intense R&D program started in 2013 with the goal of  a 100 g detector
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 1” Spanish 
galleon lead

DAMIC setup at SNOLAB

 Si support



DAMIC100 recent progress
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4k x 4k

August 2015

     
First 4k x 4k CCD with final packaging installed few weeks ago

Ancient lead 
“sandwich”

Southern 
Copper 
etched

Special setup to validate bkg 
before full scale installation
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DAMIC sensitivity



Ben Kilminster,  Munich 2015

Beyond DAMIC 100
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0.1 e- noise  
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http://arxiv.org/abs/1106.1839
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DAMIC 1 kg
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Conclusions

• DAMIC 100 has made good progress 
• DAMIC 2014 result improves upon 2011 
• CCD performance understood 
• Intrinsic Si32  background determined 
• Quenching factor 
• Two separate measurements 
• Nuclear recoil ionization efficiency 

understood down to energy threshold 
• Show consistent discrepancy with Lindhard 

• DAMIC 1kg could get close to neutrino floor 
around 1 GeV
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