

A new QCD Dark Matter Axion search using a dielectric resonant cavity

A. Caldwell, C. Gooch, A. Hambarzumjan, <u>B. Majorovits</u>, A. Millar, G. Raffelt, J. Redondo, O. Reimann, F. Simon, F. Steffen MPI für Physik, München, Germany

> **J. Redondo** University of Zaragoza, Spain

- Motivation: QCD Dark Matter Axions
 - The experimental idea
- First simulations & measurements, expected sensitivity
 - Proposed magnet and prototype setup at MPI
 - Further plans

Dec. 1st 2015, München

Motivation: solution to strong CP problem

Neutron EDM very small

→Strong force (nearly?) invariant under CP while weak force CP violating

Peccei Quinn mechanism: Add dynamical, spontaneously broken field

> →New pseudoscalar particle: Axion (oscillation around minimum)

Motivation: QCD axions as cold dark matter

QCD Axions could also explain dark matter!

Experimental idea

Experimental idea

First simulations: the boost factor

20 plates with $\varepsilon_r = 24$ (LaAlO₃)

Bandwidth per setting: ~250MHz Precision of placement of high ε plates needed: ~few μm

First simulations: the boost factor

- Maximum boost factor scales ~quadratically with number of discs
 - Area of boost peak scales ~linearly with number of discs

Simulations suggest: disc placement (80 discs) with precision of few μm is enough to achieve $\beta \sim 10^5$ with a bandwidth of tens of MHz

Boost factor can be probed by reflectance and transmittance measurements

First measurements: transmission

- 5 AIO_3 discs with diameter 100mm positioned within uncertaintiy ~ 1mm
 - Disc positions determines

transmission, reflection and boost factor (β) curves

• Prediction (red) fits measurement (black) well.

→ Verification of boost by transmission measurement!

x 10

First measurements: sensitivity

Inject fake axion signal with 3.10⁻²¹ W power

- Mesurement for one week (integrate signal): Receiver at Room Temp.
 - → Independent "blind" analysis
 - \rightarrow found > 6 σ signal succesfully

- → At LHe: noise level factor 100 better
- \rightarrow Sensitivity at the level of 10⁻²³ W expected

First measurements: sensitivity Expected 4 σ detection sensitivity with and without boost

for 80 discs, 1m² surface, 10T B-field, τ=200h, 50MHz boost andwidth, $\Delta v_a = 10^{-6}$; Cryogenic preamp @ 8 K **10**⁻¹⁰ Coupling constant g_{Ayy} [GeV⁻¹ noboost 10-12 boost 02 10° boost needed! 10-14 In case of 4o evidence: re-OCD Axion DM prediction scan frequency range to achieve > 6σ sensitivity **10**⁻¹⁶ 10-5 10-3 0.1 Excellence Cluster Univers Axion mass [eV] 10

Idea for ~10T magnet

The Canted-Cosine-Theta of the Superconducting Magnet Group of the Lawrence Berkeley National Laboratory

Two superimposed coils, oppositely skewed, achieve a pure cosine-theta field and eliminate axial field.

Inner coil structure

Mandrels integrate windings and structure, assemble poles and are part of the reaction and impregnation tooling.

AXION CCT Dipole (1000mm ID)

B. Majorovits

First prototype setup at MPI

- Test needed disc prescision
- Evaluate uncertainties
- R&D on tiling

Prototype setup partly funded

as seed project by:

First prototype setup at MPI

- Test needed disc prescision ۲
- **Evaluate uncertainties**
- R&D on tiling

Prototype setup partly funded

B. Majorovits

First prototype setup at MPI

- Test correlation btw. transmission and boost factor
- Test needed disc prescision
- Evaluate uncertainties
- R&D on tiling

Prototype setup partly funded

as seed project by:

Further plans

2016:

- Finish first test measurements at room temperature at MPI
- Test noise of preamplifier at LHe temperature
- Find additional collaborators for specific parts of project
- Start design of 10T magnet
- Develope technique to cover frequencies above 30 GHz
- R&D on production of large diameter high-ε discs

2017-2018:

- Demonstrate low noise performance, operation with many discs, scalability to 1m diameter, work in ~10 T environment
- Build prototype with preamp in LHe in cryostat and resonator in magnetic field

2019:

• Start building full scale experiment

CONCLUSIONS

- Axions in the mass range tens to hundres of µeV could solve strong CP problem AND Dark Matter
- Open dielectric resonator with 80 discs might boost axion to photon conversion rate by 5 orders of magnitude
- First measurements with low noise preamp promising: With 80 big enough discs in 10 T B-field: sensitivity enough to probe models
- 10 T dipole magnet with 1m inner hole "very doable"
- Proof of principle setup being produced

Preparations: detectable power

Proposed seed project

Significant improvement of existing setup necessary:

High precision motors to test ~µm precision of relative plate positioning

Cryogenic low

measurements

reference

noise amplifier for

Different high ε plates with diameter 200mm to test transmission behavior for different ε:

→ cross check simulations, ε
dependence, tiling of plates, precision
of geometries

