Ultralight dark matter

Javier Redondo (Zaragoza U)

MIAPP Munich, Dec 1st 2015

Universidad de Zaragoza (Spain)

1. 10 1

- mass < eV, Fermions, bosons
- Theoretical motivation
- Relic abundance
- Ultralight is different
- Direct Detection
- Laboratory searches
- Indirect Detection ... not much

Low mass bosons (technically natural)

- Pseudo-Goldstone bosons
 Very generic BSM
 Axions motivated by the strong CP problem
 Majorons, familons, etc...
- Axion-like particles in string theories Non-perturbative masses

O(100) ALPs in compactifications ... an Axiverse!

- Gauge U(1) vector bosons Stuckelberg mass Hidden sectors of string theory?

- The value of θ controls matter-antimatter differences in QCD

- The value of θ controls matter-antimatter differences in QCD

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

- is it a dynamical field? $\theta(t, \mathbf{x})$

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

- is it a dynamical field? $\theta(t, \mathbf{x})$

- is it a dynamical field? $\theta(t, \mathbf{x})$

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

- Generic interactions for Pseudo-Goldstone bosons
- Stringy ALPs, f scale ~ string scale, mass unrelated

- Generic interactions for Pseudo-Goldstone bosons
- Stringy ALPs, f scale ~ string scale, mass unrelated

- Generic interactions for Pseudo-Goldstone bosons
- Stringy ALPs, f scale ~ string scale, mass unrelated

- Generic interactions for Pseudo-Goldstone bosons
- Stringy ALPs, f scale ~ string scale, mass unrelated

- Generic interactions for Pseudo-Goldstone bosons
- Stringy ALPs, f scale ~ string scale, mass unrelated

- Generic interactions for Pseudo-Goldstone bosons
- Stringy ALPs, f scale ~ string scale, mass unrelated

New gauge forces : light hidden photons

- Extra hidden U(1)'s (Stückelberg mass)
- Kinetic mixing with photon γ γ γ γ γ γ γ γ $\mathcal{L}_{I}=-\frac{1}{2}\chi F_{\mu\nu}B^{\mu\nu}$
- Building blocks in type IIb string theory

Predictions ...

Goodsell 2011

Anisotropic predictions ...

Cicoli 2011

Relic production

Relic production: realignment

- Thermal relics would be hot DM but never enough (recall m<eV)
- Non-thermal mechanisms: realignment from initial conditions

Evolution of decoupled field (zero mode) $\ddot{a}_k + 3H\dot{a}_k + m_a^2 a_k \simeq 0$

Relic production: realignment

- Thermal relics would be hot DM but never enough (recall m<eV)
- Non-thermal mechanisms: realignment $\rho_{\rm CDM} \simeq \rho_{\rm DM} \times \sqrt{\frac{m_a}{\rm eV} \left(\frac{a_I}{4.8 \times 10^{11} \, {\rm GeV}}\right)^2}$

Is Predictivity lost? not completely

Relic production: topological defects

- After phase transition
- random initial conditions
- average is predictive
- but topological defects!
- decay into axions uncertain!
 - Sikivie, Shellard,...
 - Kawasaki & al 2014
 - Fleury & Moore 2015

 θ

 π

Relic production: topological defects

- After phase transition
 random initial conditions
 average is predictive
- but topological defects!
- decay into axions uncertain!
- Sikivie, Shellard,...
- Kawasaki & al 2014
- Fleury & Moore 2015

Relic production: topological defects

- After phase transition
 random initial conditions
 average is predictive
- but topological defects!
- decay into axions uncertain!
 - Sikivie, Shellard,...
 - Kawasaki & al 2014
 - Fleury & Moore 2015

Arias et al 2012

Arias et al 2012

Arias et al 2012

Arias et al 2012

Hidden photons : isocurvature dark matter

Graham 2015

scale factor a

Hidden photons : isocurvature dark matter Graham 2015

- Prediction?, connection of DM abundance with H-Inflation (measurable from B-modes)

Ultralight is different

- DUST-like period before matter-radiation! Hlozek 2015 - Lower limit to the mass **CMB** distortions DMdfraction DUST-like Lambda-like Axion as Dark energy $\theta(t) = \frac{a(t)}{a_I} \int_{0.5}^{0.5} \rho = cons$ Dark matter $\rho \sim \rho_0 / R(t)^3$ Constrained Region 0.001 0.01 $t \sim m_a^{-1} \lesssim t_{\rm eq}$ -32-31-26-25 $\log_{10}(m_{a}/eV)$
- Ultralight axions (~10^-22 eV) differences in Structure formation (wave interference)

- Lengths ~ 1/m
- softer cores
- low mass halos suppressed
- Sikivie's condensate...

Schive 2014

DM Direct detection

Cavity experiments

- Dark matter, classical field $\theta(t), \phi(t), \vec{A'}(t) \propto \cos(mt)$
- Axions, ALPs HPs couple to photons
- Modified Electrodynamics (example axions)

$$\nabla \cdot \mathbf{D} = \rho_{f}$$

$$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{J}_{f} - c_{\gamma} \frac{\alpha}{2\pi} \mathbf{B} \frac{\partial \theta}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$

$$\mathbf{In a magnetised medium}$$

$$\mathbf{E}_{a}(t) = \frac{c_{\gamma} \alpha \theta_{0} \mathbf{B}}{2\pi \epsilon} \cos(m_{a}t)$$

$$|\mathbf{E}_{a}| \sim 0.6c_{\gamma} \times 10^{-30} \frac{V}{m}$$

- Amplify signal in a MW resonant cavity (Sikivie '83)

- Tunable cavity
- High B field
- Low Temperature (<K)
- Low noise pre-amp (<K)

ADMX-HF

ADMX-Fermilab

CARRACK (discontinued)

CAST-CAPP

CULTASK - CAPP -Korea

Cavity experiments

Dish antenna

Karsruhe FUNK

Tokyo Experiments

visible

10-11

10-12

10-13

10-14

10-6

10-5

10-4 10-3 10-2 10-1 10⁰ Hidden photon mass m_{γ} [eV]

10¹

Allowed

HP CDM

Enhanced mirror with dielectric layers

- Just a mirror is not good enough for axions ...
- Use many (mirror configuration, cavity configuration)

Oscillating electric dipole moment (axion DM)

- Mainz (D. Budker's group) & Berkeley
- B-field, coherence time, sensitivity to m < neV
- Phase I starts in 2016, Phase II physics results

Stars as Laboratories

- Strong constraints (Sun, SN1987A, WDs, RG, HB ...)
- But slight preferences for meV-mass axions (electron/neutron coupling)

Indirect detection

- Axions, ALPs, HPs are not stable $a \to \gamma \gamma$, $\gamma' \to \gamma \gamma \gamma$
- Decay lifetime very long (sub-eV)
- Annihilation negligible
- But inhomogeneous DM, axion miniclusters, HP clumps - Annihilation in a neutron star ... Fast Radio Bursts?

Zurek et al 07, See also Kolb & Tkachev 94

- Axions, Axion-likes, Hidden Photons make good dark matter
- Bottom-up and Top-bottom motivation
- Relic abundance : realignment and topological defects
- Ultralight is different : hyperlow mass effects in structure formation
- Direct Detection: key target areas not completely covered
- Laboratory searches,
- Indirect Detection ... not much

Axion DM : A developing picture

