

Machine Learned Tracklet Filters - Update

Rudolf Früwirth, Jakob Lettenbichler, Thomas Madlener

02.09.2015

- 王

Rudolf Früwirth, Jakob Lettenbichler, Thomas Madlener

Global Resu

Detailed Results

What happened since Vienna?

Wrap up

- Development of tools for testing feasibility of incorporating advanced machine learning (ML) approaches into SectorMap approach of VXDTF
- Testing of different ML classifiers
 - Multilayer Perceptron
 - Boosted Decision Trees
- Started writing of Thesis

Replace/Support three hit filters with a ML classifier

- use three hit combinations passing the two filter stage of the VXDTF as inputs
 - ightarrow SNR pprox 0.75 after two hit filters
- ML classifier labels input as signal or background

Possible Advantages:

- + Better separation of signal and background compared to current approach
 - \rightarrow Reduced combinatorics in later stages
- + Generalization capabilities require reduced amount of
 - training samples
 - sectors / SectorMaps

Global Results

Detailed Results

ML Classifiers

Tested classifiers:

Multilayer Perceptron (MLP)

- one hidden layer with different numbers of neurons
- different activation functions of output neuron:
 - logsig: logistic function $f(z) = (1 e^{-t})^{-1}$
 - linear: linear function f(z) = z
- o done with MATLAB

Boosted Decision Trees (BDT)

- different Boosting algorithms:
 - AdaBoost (MATLAB)
 - Stochastic Gradient Boosting (FastBDT, BASF2)
- different tree depths / numbers of decision splits
- different numbers of boosting steps

프 🖌 🖌 프

Generation of Training and Test Samples

Plan:

- use SegmentNetwork to get samples/inputs
- feed tracklets from SegmentNetwork to classifier → classifier is a 'pluggable' substitute to current filters
- in a first step use SVD only

But:

- not yet ready in framework
- 'misuse' current VXDTF to generate samples

classifier - machine learned instance (BDT, MLP) with output that makes classification into background/noise and signal possible

Global Resu

Detailed Results

Generating Samples with current VXDTF

Wrap up

- simulate generic events with background
- VXDTF to get track candidates:
 - enable only two hit filters
 - distance3D
 - o distanceXY
 - disable filtering/cleaning of overlapping track candidates (i.e. disable Hopfield network or greedy algorithm)
 - tune CutOff Values by 6 % (tuneCutOffs: 0.06)
- convert to SPTCs for further processing
 - disable usage of single Cluster SPs (need global position)
- create three hit samples from SPTCs
 - split SPTC into tracklets containing three SpacePoints each

→ E > < E</p>

- hits are on consecutive layers (i.e. no overlapping parts at the moment)
- if all SpacePoints have relation to the same MCParticle \rightarrow signal sample, else background/noise sample
- relations to other MCParticles are not considered
- SpacePoints with no relation to any MCParticle \rightarrow background/noise sample

Input of classifiers:

global coordinates of SpacePoints $\rightarrow \boldsymbol{x} \in \mathbb{R}^9$

> < ≣

background/noise sample:

★ Ξ > ★ Ξ >

The whole data set is split up in a training set and a testing set (not used in training at all)

- For comparable results the same training and testing sets are used for all classifiers.
- Still some randomness in training (network initialization, random splits in stochastic gradient boosting)
- Input data is decorrelated before splitting (negligible difference)
- Comparison of output distributions of both sets used to check if a classifier is overtrained

★ E → < E</p>

Global Results

Detailed Result

Summary & Outloc

Determining Classification Cut

efficiency and SNR in output (SNR_{out}) depending on the applied classification cut

SNR_{out} - ratio of true positives to false positives

ъ

Detailed Results

OAW

Comparison of different classifiers

SNR gain vs. efficiency for different tested classifiers

SNR gain = SNR_{out}/SNR_{in}

Classifiers:

- MLP logsig 50 hidden neurons, logsig output
- MLP linear 50 hidden neurons, linear output
- **BDT** 50 decision splits, 2000 boosting steps, *AdaBoost*
- FastBDT tree depth 6, 2000 boosting steps

Global Results

Detailed Results

Comparison of different classifiers

- \rightarrow Decorrelating improves performance of all tested classifiers by a factor of approx. 1.3 1.6
- → BDTs (including FastBDTs) generally perform better than MLPs (at least with 50 hidden neurons)
- → evaluation time rules out BDTs trained with AdaBoost (table below)

[µs/sample]	training	evaluation
MLP w/ <i>H</i> = 50	$\sim 2400-3400$	$\sim 2.1-2.4$
BDT w/ <i>D</i> = 50, <i>N</i> = 2000	$\sim 10^4$	$\sim 10^3$
FastBDT w/ <i>N</i> = 2000	$\sim 250-270$	$\sim 10 - 10^{2}$

NOTE: MLP tested with MATLAB \rightarrow evaluation times probably do not translate to BASF2

▶ < Ξ

Performance Analysis

Perform a more detailed analysis of the classifiers to spot possible weak (or sweet) spots

- θ and ϕ -dependent performance
- p- and p_T -dependent performance
- charge and PDG code dependent performance

Prerequisites for following analysis:

- Only one (global) classification cut determined from overall performance, such that overall efficiency is \geq 0.99
- No MC information available for background samples
 → only efficiency can be analyzed

Main Result:

- $\rightarrow\,$ all tested classifiers show qualitatively same characteristics
- \rightarrow following plots obtained with best performing FastBDT (tree depth = 6, 2000 boosting steps)

프 🖌 🖌 프

Global Results

Detailed Results

θ -dependent performance

> < ≣

Rudolf Früwirth, Jakob Lettenbichler, Thomas Madlener

Global Results

Detailed Results

θ -dependent performance

SNR in input and output and ratio in bins of θ

efficiency in bins of θ

ъ

- $\rightarrow\,$ Efficiency stable over wide range, dropping below 0.99 at the edges only
- \rightarrow Efficiency below 0.9 only at θ outside of official detector boundaries
- $\rightarrow\,$ SNR gain stable at approx. 3 4 for wide range reaching up to almost 30 for forward direction with high background
- $\rightarrow\,$ choosing cuts such that each bin has 0.99 efficiency yields similar results with reduced SNR gain at the edges

Global Results

Detailed Results

phi-dependent performance

ъ

Rudolf Früwirth, Jakob Lettenbichler, Thomas Madlener

Global Results

Detailed Results

ϕ -dependent performance

SNR in input and output and ratio in bins of ϕ

ъ

Global F

Detailed Results

ϕ -dependent performance

- ightarrow Efficiency stable \ge 0.98 over whole range
- $\rightarrow \text{ SNR}_{\text{out}}$ stable over whole range
- $\rightarrow\,$ SNR gain with broad peak around $\phi\approx$ 40 due to high background in input there
 - \rightarrow unclear if this is due to SectorMap or stems from simulation
 - → naively expected an almost flat distribution as input
- $ightarrow \,$ dips in output at overlapping parts of layer 4
 - \rightarrow hits in overlapping parts excluded
 - \rightarrow Why from layer 4?
- $\rightarrow\,$ choosing cuts such that efficiency is 0.99 in all bins has no significant effects

→ E > < E</p>

o up

Global Results

Detailed Results

Summary & Outloo

OAW

p- and p_T -dependent performance

- ightarrow efficiency \geq 0.95 for all values of p and p_T
- ightarrow only first bin ($p_T = 0.1 \, \text{GeV/c}, \, p = 0.12 \, \text{GeV/c}$) below 0.99 efficiency

/rap up

Global Results

Detailed Results

Summary & Outloo

charge and PDG code dependent performance

 $\rightarrow\,$ Efficiency higher for neg. charged particles although number of pos. and neg. charged particles almost balanced

- ightarrow Effect is bigger for decorrelated data
- ightarrow lowest efficiency for e^-/e^+

Summary

- $\rightarrow\,$ BDTs (incl. FastBDTs) with better classification performance compared to MLPs
- $\rightarrow\,$ **Decorrelation** of inputs improves performance of all tested classifiers significantly
- $\rightarrow\,$ Performance looks promising however no real prediction possible on the impact on the VXDTF

Open Question

- \rightarrow Why is input not flat in ϕ ?
- \rightarrow Why is efficiency better for neg. charged particles?
- → How does this effect the VXDTF?

Summary & Outlook

★ E → ★ E →

Next Steps

- \rightarrow Check input distribution in ϕ with particle gun instead of generic events and without background to discern 'external' sources
- $\rightarrow\,$ Check performance in cases where hits are not on consecutive layers
- $\rightarrow\,$ Once SectorMap is ready check how ML filter can be implemented and test effects
- \rightarrow Continue writing theses
- \rightarrow ... Your Suggestions / Requests

∃ → < ∃ →</p>

Summary & Outlook

Y v

Global Results

Detailed Result

Thank You

Questions or Remarks?

Rudolf Früwirth, Jakob Lettenbichler, Thomas Madlener