

Digitizers, First Round of Reconstruction

PXD Cluster Shape Correction in DEPFET Pixel Detector

Peter Kodyš, Helena Pikhartová, Peter Kvasnička, Zdeněk Doležal, Tadeáš Bilka Charles University in Prague

For F2F meeting, September 1-2, 2015, KIT Karlsruhe

Content

1. Plan for basf2 PXD/SVD cluster reorganization
2. Using cluster shape to improve of hit position and error estimation
3. Simulation condition for Belle II geometry
4. Toy simulation/validation

Using cluster shape to improve of hit position and error estimation

- There are five basic types of clusters for four different pitch in v direction: single, double and triple pixel clusters, rest of symmetrical and nonsymmetrical clusters.
- In Belle II geometry for particles shot of $0.05-3.0 \mathrm{GeV}$ electrons and positrons in uniformly distributed directions from the interaction point and in range phi 17-150 deg, with magnet
- In Belle II: 25 \% form single-pixel clusters, 15 \% form 2-pixel clusters along the R-phi coordinate, and 26 \% along the z-coordinate. 12 \% form non-symmetric "L"-shaped three-pixel clusters, 16 \% form larger non-symmetrical clusters, and rest 6% form symmetrical clusters (like 2×2 clusters).

Categorization of cluster shapes

Using cluster shape to improve of hit position and error estimation

- For single-pixel clusters, the obvious hit position estimate is the center of the pixel, error estimation improve for only expecting in-pixel region.
- For single-pixel clusters, hit position uncertainty is given by the area where a given energy deposition is mostly contained within the single pixel - it therefore depends on pixel charge and clustering threshold.
- For larger clusters, hit position is estimated separately for the u - and v coordinates, using center-of-gravity estimates for clusters size 2 and the analog head-tail method for size 3 and more. Generally, the average resolution is best for small clusters of size 2 and 3.
- With particles arriving at different (and unknown) directions, the standard eta-correction algorithms are not usable. Therefore, simple bias-correcting methods for center-of-gravity and head-tail estimates are desirable, that would only use measurable quantities to correct for bias and set realistic error estimation.

Simulation condition for Belle II geometry

- For single-pixel clusters, the obvious cluster position estimate is the center of the pixel.
- Position of clusters on ladders is on perpendicular to interaction point

Layer $189.6 \times 12.5 \mathrm{~mm}^{2}$ PXD in Belle II - all clusters distribution

Pixel size: 60×50
55×50
55×50
60×50
Layer $2122.88 \times 12.5 \mathrm{~mm}^{2}$ PXD in Belle II - all clusters distribution

Pixel size: $85 \times 50 \quad 65 \times 5065 \times 50 \quad 85 \times 50$

Simulation condition for Belle II geometry

- For L-shape clusters, the obvious cluster position is bit out of the calculation.

Layer $2122.88 \times 12.5 \mathrm{~mm}^{2}$ PXD in Belle II - " L " shape hits distribution

Pixel size: $85 \times 50 \quad 65 \times 50 \quad 65 \times 50 \quad 85 \times 50$

Layer $189.6 \times 12.5 \mathrm{~mm}^{2}$ PXD in Belle II - "L" shape hits distribution

Pixel size: 60×50
$55 \times 50 \quad 55 \times 50$
60×50

Simulation condition for Belle II geometry

- u (r-phi) direction: -10 .. +35 deg
- v (theta) change: -10 .. +10 deg
- Than bias is on both direction and correction works better

Residual plot of " L " shape in one orientation before (left) and after (right) correction

Cut of incident angle range in r-phi

Residual plot of " L " shape in all orientation before (left) and after (right) correction

Simulation condition for Belle II geometry

Simulation for source independent position

Simulation condition for Belle II geometry

Following slides show examples of shape filter properties

> More is on backup

Full set is in disposition on request

CI. Shape: 0 - Large (pixel size 0)

$1 \mathrm{a}-24 \%$ of all events
$16-0.4 \%$ of all events
$17-1 \%$ of all events

From σ-electrons mostly than error is larger -> underestimated

Seed - similar Cluster charge - max shifted

Normalised error

1a

In Pix Map

From o-electrons

 mostly...

Angle Hit Map

Clinene: 0 - Large

In Pix Map
$1 \mathrm{a}-22 \%$ of all events
$16-1 \%$ of all events
$17-3 \%$ of all events
Reco position is appointed to the center of the pixel

Seed - similar Cluster charge - max shifted

Normalised error

Norm. Error (pix3)					
1a-Sigma u	1a-Sigma v	16-Sigma u	16-Sigma v	17-Sigma u	17-Sigma v
0,6413	0,5803	1,418	1,088	1,462	1,019

Over estimated for 1 a
Under estimated for 16, 17

CI. Shape:

10 - L
(pixel size 0)
$1 \mathrm{a}-3 \%$ of all events $16-4 \%$ of all events $17-4 \%$ of all events

Reco position is appointed to three corners of the pixel

Seed - similar Cluster charge - similar

1a
16

Normalised error

Norm. Error (pix0)			
1a-Sigma u	1a-Sigma v	16 -Sigma u	16 -Sigma v
0,6229	0,6326	0,6344	0,6765
17 -Sigma u	17 -Sigma v		
0,5303	0,7552		

Over estimated for all

In Pixel Position - pix0 - 1a

0) Large
1) 1×1
2) 2×1
3) 1×2
4) 2×2 diag
5) $N x 1$
6) $1 x M$
7) Nx 2
8) $2 x M$
9) $2 x 2$
10) L
11) mirror $u L$ 12) mirror $v L$ 13) mirror $u+v L$ 14) All L 15) All

Toy simulation/validation
Angle range: 33-55 deg Angle: 40 deg
Map of corner position
10-L (pixel size 0)
(The same color scale)

CI. Shape: 4-2x2 diag (pixel size 0)

Cluster

Implementation to basf2

For bias correction and error realistic estimation is useful to know following information:

- Shape of cluster
- Angle of path of particle with respect to sensor plane
- In-pixel position of particle in sensor plane
- Direction of particle flight with respect to sensor plane

Full this information we have in fitting time so we can apply
Applying will be on reco hit position and error estimation
Hot candidates for bias correction:

- cluster $2 \times 2(u, v)$ three pixels: (L, mirror in u, v and $u+v$)
- cluster 2×2 diagonal (u,v) pixels
- cluster $2 x 2$ anti-diagonal (u,v) pixels

Plan

- Write a code to basf2 for shape recognition
- Write code for correction of bias and error estimation
- Calculate/simulate corrections
- Add it to database (?)
- Prepare validation of corrections
- Term: this year (with respect of reorganization of clustering code)

Thank you for your attention

Follow backup slides...

Cl. Shape: 1-1x1 (pixel size 0)

1a-9\% of all events
$16-30 \%$ of all events
$17-2 \%$ of all events

Reco position is appointed to the center of the pixel

Seed - similar Cluster charge - similar

Normalised error

Norm. Error (pix0)					
1a-Sigma u	1a-Sigma v	16-Sigma u	16-Sigma v	17-Sigma u	17-Sigma v
0,6691	0,7318	0,7727	0,7981	0,8064	0,7893
Over estimated for all					

In Pix Map

CI. Shape: $4-2 \times 2$ diag
 (pixel size 0)
 $1 \mathrm{a}-2 \%$ of all events
 $16-1 \%$ of all events
 $17-0.4 \%$ of all events

Reco position is appointed to the corners of the pixel

Seed - similar Cluster charge - similar

CI. Shape: 14 - All L (pixel size 0)

1a -12% of all events 16-14\% of all events $17-14 \%$ of all events

Reco position is appointed to the corners of the pixel

Seed - similar Cluster charge - similar

Normalised error

Angle Hit Map

Cluster Charge

 Seed, all, shape: 14

Over estimated for all

Angle hit map for tracks - pix0 - 1a

Angle hit map for tracks - pix0 - 16

Angle hit map for tracks - pix0-17

Seed - pix0-1a

Cluster Charge - pix0 - 1a

0) Large
1) 1×1
2) 2×1
3) 1×2
4) 2×2 diag
5) $N x 1$
6) $1 x M$
7) Nx 2
8) $2 x \mathrm{M}$
9) 2×2
10) L
11) mirror $u L$ 12) mirror $v L$ 13) mirror $u+v L$ 14) All L 15) All

|l

Residual - pix0-1a

0) Large
1) 1×1
2) 2×1
3) 1×2
4) 2×2 diag
5) Nx 1
6) $1 x M$
7) $N x 2$
8) $2 x M$
9) 2×2
10) L
11) mirror $u L$ 12) mirror $v L$ 13) mirror $u+v L$ 14) All L 15) All

Cluster Shape: Hit Map, Pixel 0/1

Cluster Shape: Hit Map, Pixel 2/3

