

TrackFinderCDCLegendre: overview

Viktor Trusov 01.09.2015 | F2F Meeting in Karlsruhe

Karlsruhe Institute of Technology (KIT)

Module structure

Quad tree with quad tree processor

- For finding possible track candidates legendre transformation is used:
 - Similar to the hough transformation
 - Quad tree used as a data-structure
 - Uses quadtree processor for setting search rules
 - Reliable for finding tracks coming from IP

Few passes of quad tree search with different setting are performed:

Sliding bins

- For better performance of quad tree search sliding bins were introduced:
 - Allows to decrease border effects
 - Bins (quad tree nodes) are splitted more "smoothly"
 - Used for bins on $|v| \ge 6$

Sliding bins – example

Maxlevel resolution

- Optimal deepness of the quad tree is 13
 - But for low-pt region bins should be more coarse due to material effects

Instead of setting max. level of the quad tree resolution was introduced

- Defines size of the lowest bin
- Implicitly takes into account all effects that bring inefficiencies
- Estimated using MC simulation
- Different functions are used for different cases
 - Tracks from IP
 - Tracks from non-IP
 - etc

Fitting and transformation to the new reference point

- Track fitting:
 - Karimaki circular fit is used
 - Gives reliable results
- As track is successfully fitted POCA is taken as reference point
 - Conformal transformation performed with respect to new ref. point
 - Single quad tree node created and filled with updated hits

After successful trajectory determination: New hits are assigned (basing on the distance to the trajectory)

Bad hits are removed

Before refactoring:

the track

After refactoring:

Hits assignment/rejection

Back-to-back tracks are splitted

 $1 - \exp 1/d$,

Hits assigned to the track if $d < 0.2 \ cm$

Hits which are far away from the trajectory are rejected

by Viktor Trusov

Track merging

- Merging of tracks are based on comparing of chi2 of tracks before merging and after
 - Each track checked for compatibility with others

- Hits were rejected in few stages by lowering threshold on distance to the common trajectory
- tracks couldn't be merged:
 - if after few iteration number of hits dramatically decreased
 - if resulting chi2 is not satisfactory
- For each track best candidate for merging selected the best one

Module refactoring

- Currently GlobalFinder is under heavy refactoring:
 - Moving from TrackCandidate to CDCTrack class
 - Rejection of TrackHit class and moving to CDCRecoHit3D
 - still QuadTreeHitWrapper is used as CDCWireHit wrapper and dataobject in quadtree structure
 - Reworked hit assignment procedures

There are problems with fitting (and as result – merging):

- The chi2 of the fits are unreasonably high by orders of magnitude
- May be as result of underestimated uncertainties of the hits

Efficiency

TrackFinderCDCLegendre: overview

Conclusion

- Global finder shows reliable result in all pt regions
- Still affected by the fake tracks
- Refactoring brings opportunity to introduce improvements into the module
 - Decrease fake rate
 - Decrease CPU time
 - Etc
- Plans:
 - Finish refactoring
 - Improve quality criteria of the tracks
 - Make robust merging

Backup

How to measure resolution?

- Using particle gun single tracks were generated
 - $p_t < 2 \ GeV$
 - $d0 normal distribution with <math>\sigma = 3 cm$
- Using parameters of the track single QuadTree node was created
 - QuadTree node centered
- Boundaries of the node taken as whole legendre phase space
- If all generated hits could belong to the node reduce its size by factor 2
- Repeat until desired number of hits still belongs to the node

Final size of node characterizes resolution for track with given parameters

Resolution – *pt*

- Resolution also depends on p_t
 - For lower p_t it's higher (as expected)
 - Unexpected: bump around 0.8 GeV

