Helix gymnastics.

F2F Meeting - Karlsruhe 2015

Oliver Frost
Deutsches Elektronen-Synchrotron (DESY) 2015-09-01

17
HELMHOLTZ
| ASSOCIATION
> Addressing of points in perigee parameter representation
> Issues converting perigee uncertainties to Cartesian uncertainties.
> Questions

Addressing of points in perigee parameter representation

Perigee parameterisation - currently implemented

Definition

The perigee is the point on the helix closest to the beam line.

Parameters related to xy only

$>d_{0}$ - signed distance to the origin
$>$ Sign is the sign of z coordinate of $\vec{x} \times \vec{p}$
$>\phi_{0}$ - direction of the momentum at the perigee
$>\omega$-curvature in the $x y$ plane signed by the charge.
$>$ Unfortunately this is the opposite of the mathematical curvature

Parameters related to z

$>z_{0}-z$ coordinate of the perigee
$>\tan \lambda$ - angle out of the xy plane $=\frac{p_{z}}{p_{t}}=\frac{\partial z}{\partial s}$

Addressing points on the helix

Naive addressing of the helix points

Using the opening angle χ from the perigee viewed from the center of the helix

$$
h(s)=\left(\begin{array}{ccc}
\cos \phi_{0} & -\sin \phi_{0} & 0 \\
\sin \phi_{0} & \cos \phi_{0} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
-\frac{\sin \chi}{\omega} \\
\frac{\cos \chi-1}{\omega}-d_{0} \\
-\tan \lambda \cdot \frac{\chi}{\omega}+z_{0}
\end{array}\right)
$$

Weaknesses of this parameterisation

$>$ Isolated singularity at $\omega \sim 0$ in x and y
$>$ Unstabilities for low curvatures
$>$ Unstabilities when close to the helix and make small extrapolations, because the helix is perceived as almost straight.
$>$ Cannot represent a straight line $\omega=0$.

Demostration of the weakness of χ

Figure 1: χ parameter okay for rather large ω and large extrapolation steps.

Figure 2: As $w \rightarrow 0$ positions become more sensitive to χ

Demostration of the weakness of χ-small scale

Figure 3: χ parameter okay for rather large ω and large extrapolation steps.

Figure 4: Same weakness occures on small scales, e.g. extrapolating near the origin.

Lifting the isolated singularity by replacing χ

Two dimensional arc length s

$$
\begin{aligned}
s & =-\frac{\chi}{\omega} \\
\chi & =-s \cdot \omega
\end{aligned}
$$

In contrast to the opening angle χ the two dimensional arc length s is also defined for the straight line.

The sinus cardinalis

The divergent quotient in the x coordinate

$$
x(s)=-\frac{\sin \chi}{\omega}=s \cdot \frac{\sin (s \cdot \omega)}{s \cdot \omega}=s \cdot \operatorname{sinc}(s \cdot \omega)
$$

contains the same sort of divergence as the sinus cardinalis function. Similarly

$$
y(s)=-s \cdot \sin \left(\frac{s \cdot \omega}{2}\right) \cdot \operatorname{sinc}\left(\frac{s \cdot \omega}{2}\right)-d_{0}
$$

Addressing points on the helix

Improved addressing of the helix points

Using two dimensional arc length s

$$
h(s)=\left(\begin{array}{ccc}
\cos \phi_{0} & -\sin \phi_{0} & 0 \\
\sin \phi_{0} & \cos \phi_{0} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
s \cdot \operatorname{sinc}(s \cdot \omega) \\
-s \cdot \sin \left(\frac{s \cdot \omega}{2}\right) \cdot \operatorname{sinc}\left(\frac{s \cdot \omega}{2}\right)-d_{0} \\
\tan \lambda \cdot s+z_{0}
\end{array}\right)
$$

Issues converting perigee uncertainties to Cartesian uncertainties.

Continuted conversation with Anze.

Summary

> Anze: Using the Belle II code I do not get the same 6×6 covariance matrix for position and momentum as Belle I when unpacking from the 5×5 covariance matrices of the perigee parameters.
$>\mathrm{Me}$: The 6x6 Cartesian covariances are not unique and are partly abitrary in the sense, that a convention has to be established to get them. Probably the convention of Belle I is different to the current implementation of Belle II, which is why there cannot be a match in the 6×6 covariance matrix.
$>$...
$>$ We also found some sign errors in the UncertainHelix, but still the above statement holds.

Converting to cartesian covariances

Task

Given a 5×5 covariance matrix of the perigee parameters find the 6×6 covariance of the cartesian parameters.

```
Constraints
The 6x6 covariance matrix can be of rank 5 at best.
Corollary there is one linear combination of Cartisian parameters that has a
variance of 0, meaning that it is know to infinite precision.
Which combination is it?
Equivalently how is the left over rank filled?
```

\square
There are manv equivalently valid answers!

Converting to cartesian covariances

Task

Given a 5×5 covariance matrix of the perigee parameters find the 6×6 covariance of the cartesian parameters.

Constraints

$>$ The 6×6 covariance matrix can be of rank 5 at best.
$>$ Corollary there is one linear combination of Cartisian parameters that has a variance of 0 , meaning that it is know to infinite precision.
$>$ Which combination is it?
$>$ Equivalently how is the left over rank filled?

There are many equivalently valid answers!

Converting to cartesian covariances

Task

Given a 5×5 covariance matrix of the perigee parameters find the 6×6 covariance of the cartesian parameters.

Constraints

$>$ The 6×6 covariance matrix can be of rank 5 at best.
$>$ Corollary there is one linear combination of Cartisian parameters that has a variance of 0 , meaning that it is know to infinite precision.
$>$ Which combination is it?
$>$ Equivalently how is the left over rank filled?

Suspicion

There are many equivalently valid answers!

Converting to cartesian parameters

Perigee - first three parameters

$$
\vec{x}=\left(\begin{array}{c}
d_{0} \cdot \sin \phi_{0} \\
-d_{0} \cdot \cos \phi_{0} \\
z_{0}
\end{array}\right)
$$

Momentum - last three parameters

$$
\vec{p}=p_{t} \cdot\left(\begin{array}{c}
\cos \phi_{0} \\
\sin \phi_{0} \\
\tan \lambda
\end{array}\right)
$$

where

$$
p_{t}=\frac{B_{z} \cdot c \cdot 10^{11}}{|\omega|}
$$

Demostration

Themes

$>$ Covariance propagation C to C^{\prime} using similarity transformations with Jacobi matrix of derivations J

$$
C^{\prime}=J \cdot C \cdot J^{T}
$$

$>$ Always derive first before inserting the known values.
$>$ The origin is a abitrary construct.
$>$ Different choice of the origin does not invalidate the results.
$>$ Moving to a new origin in Cartesian parameters is an identity for the Cartesian covariance.
$>$ Moving to a new origin in perigee parameters is none trivial.

In the following slides

$>$ Concentrating on the xy coordinates only
$>$ Assuming $\phi_{0}=0$ without loss of generality (rotations are a trivial matter)

Investigated situation

Figure 5: Projection of a helix after rotating to $\phi_{0}=0$

Translation from the current reference point \xy part only

Using a similarity transformation, where the Jacobian matrix of the transformation from perigee parameters to Cartesian parameters is

$$
J_{\text {inflate }}=\left(\begin{array}{lll}
\frac{\partial x}{\partial d_{0}} & \frac{\partial x}{\partial \phi_{0}} & \frac{\partial x}{\partial \omega} \\
\frac{\partial y}{\partial d_{0}} & \frac{\partial y}{\partial \phi_{0}} & \frac{\partial y}{\partial \omega} \\
\frac{\partial p_{x}}{\partial d_{0}} & \frac{\partial p_{x}}{\partial \phi_{0}} & \frac{\partial p_{x}}{\partial \omega} \\
\frac{\partial p_{y}}{\partial d_{0}} & \frac{\partial p_{y}}{\partial \phi_{0}} & \frac{\partial p_{y}}{\partial \omega}
\end{array}\right)=\left(\begin{array}{ccc}
0 & d_{0} & 0 \\
-1 & 0 & 0 \\
0 & 0 & -\frac{p_{t}}{\omega} \\
0 & p_{t} & 0
\end{array}\right)
$$

Constrained direction with covariance 0

$$
\frac{1}{d_{0}} \cdot x-\frac{1}{p_{t}} \cdot p_{y}
$$

depends on the parameters themselves.

Alternative approach

1. First move the origin into the perigee.
2. Then translate to Cartesian coordinates

Figure 6: Original situation

Figure 7: After the moving the origin

Alternative approach - first move covariance into perigee $\backslash x y$ part only

Moving the perigee covariance matrix from the reference point to the perigee first in a passive move.

$$
J_{\text {move, orthogonal to } \phi_{0}}=\left(\begin{array}{ccc}
\frac{\partial d_{0}^{\prime}}{\partial d_{0}} & \frac{\partial d_{0}^{\prime}}{\partial \phi_{0}} & \frac{\partial d_{0}^{\prime}}{\partial \omega} \\
\frac{\partial \phi_{0}^{\prime}}{\partial d_{0}} & \frac{\partial \phi_{0}^{\prime}}{\partial \phi_{0}} & \frac{\partial \phi_{0}^{\prime}}{\partial \omega} \\
\frac{\partial \omega^{\prime}}{\partial d_{0}} & \frac{\partial \omega^{\prime}}{\partial \phi_{0}} & \frac{\partial \omega^{\prime}}{\partial \omega}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1+\omega \cdot d_{0}}{1+\omega \cdot d_{0}^{\prime}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(Karimaki 1990)

Notes

$>$ Moving parallel to the position vector does not change the perigee.
$>$ Moving preserves all information in the covariance matrix. A reverse move of the origin cancels out exactly.
$>$ Could also move to a different position inbetween or further away.

Alternative approach - second inflate to cartesian covariance $\backslash x y$ part only

Same inflation jacobian matrix as before, but we can insert $d_{0}=0$, because we moved to the perigee first

$$
J_{\text {inflate }}=\left(\begin{array}{lll}
\frac{\partial x}{\partial d_{0}} & \frac{\partial x}{\partial \phi_{0}} & \frac{\partial x}{\partial \omega} \\
\frac{\partial y}{\partial d_{0}} & \frac{\partial y}{\partial \phi_{0}} & \frac{\partial y}{\partial \omega} \\
\frac{\partial p_{x}}{\partial d_{0}} & \frac{\partial p_{x}}{\partial \phi_{0}} & \frac{\partial \partial x_{x}}{\partial \omega} \\
\frac{\partial p_{y}}{\partial d_{0}} & \frac{\partial p_{y}}{\partial \phi_{0}} & \frac{\partial \rho_{y}}{\partial \omega}
\end{array}\right)=\left(\begin{array}{ccc}
0 & d_{0} & 0 \\
-1 & 0 & 0 \\
0 & 0 & -\frac{p_{t}}{\omega} \\
0 & p_{t} & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -\frac{p_{t}}{\omega} \\
0 & p_{t} & 0
\end{array}\right)
$$

Total jacobian matrix of the conversion is

$$
J=J_{\text {inflate }} \cdot J_{\text {move }}
$$

Constrained direction with covariance 0

X

$>$ Does not depend on the concrete parameters!
$>$ Resulting covariance matrix is clearly different from the previous approach.
$>$ The constrained direction is easier to spot.

Summary of the demonstration

Many valid conversion procedures from 5×5 to 6×6

$>$ Converting from the origin (probably Belle I)
$>$ Move to the perigee than inflate (current Belle II)
$>$ Move halfway between origin and perigee, than inflate.
$>$ Move one radius away from the helix.
$>$...

Conclusion

$>$ Obtaining a 6×6 Cartesian covariance from the 5×5 perigee covariance is ambiguous and depends on a particular convention.
$>$ There is always one linear combination of the Cartesian coordinates, that is known to abitrary precision.
$>$ To keep the coordinate that is know in check I propose to always move to the perigee first, before the inflation.
$>$ The constained coordinate is x (rotated by ϕ_{0}) the spatial component along the helix in this case.

Questions

First my questions

$>$ What does it even mean for physics analysis to have covariances of rank 5 ?
$>$ Ultimately the results should not depend on the particular choice of translation convention.
$>$ Should we rather stick to inverse Cartesian covariances C^{-1} to signify that one direction is infinitely unconstrained in contrast to infinitely constrained?
$>$ Are we throwing to much of the covariance out of the window?
$>$ The missing 6th coordinate is s
$>$ Although s is 0 at the perigee and can be neglected for storage, its covariance with the other perigee parameters might unambiguosly fill the missing rank.

