

Track Fitting in Belle II

The Genfit Library and its Performance

Tobias Schlüter, LMU München

EPS-HEP 2015 (Vienna) 2015-07-25

Currently being set up at KEK, Japan.

- B-factory experiment
- first beam 2016
- physics from 2018
- instantaneous luminosity goal L = 8 × 10³⁵ cm⁻²s⁻¹ (40 times Belle, KEKB)

See talks by Z. Dolezal, J. Wiechczyski

TRACKING DETECTORS IN BELLE II

Aims:

- Momentum range: 50 MeV – –5 GeV
- background resistant
- high resolution

Detector choices:

- Vertex detector: six layers of silicon
- Drift chamber: 56 wire layers, divided into 9 sueprlayers

T. Schlüter

The Belle II Vertex Detector

- two layers of DEPFET pixels (PXD)
- four layers of double-sided silicon strip detectors (SVD)

Discussed in G. Casarosa's talk.

Figure: Drift Chamber CDC

- 14k sense wires
- 42k field wires
- ▶ 8000 ℓ gas volume, outer radius 1.25 m
- ▶ 56 layers, divided into 9 superlayers (5 axial wires, 4 stereo wires)

Figure: Drift Chamber End Plate

Figure: Drift Chamber Detail

- e^+e^- are brought into collision in the tiny beamspot
- $\Upsilon(4s)$ is produced, decays into $B\overline{B}$ pair
- these propagate $O(100 \,\mu\text{m}) (p_{\text{LAB}} = 1.5 \,\text{GeV}) \dots$
- …before decaying into a total of O(10) tracks
- most important observable: separation of *B* decay vertices along boost direction

Online, Offline

Trigger, Readout

See C. Li's talk

- CDC trigger does very coarse tracking (hardware trigger)
- ► complete offline TF is used in high-level trigger, used for background suppression in PXD

Offline

Stand-alone trackfinding in subdetectors

- vertex detector: cellular automaton, Hopfield network for candidate evaluation
- drift chamber: Legendre-based global track finder, cellular automaton-based local track finding Combination of subdetectors
 - ► found tracks are merged if fitted parameters agree at subdetector boundary
 - cross-detector searches, extrapolations for additional hits (under development)

Convergence Point

Track fitting is the convergence point of many things.

Convergence Point

Track fitting is the convergence point of many things.

The GENFIT Library

- Belle II initially based its track fitting on the experiment-independent GENFIT library (arXiv:0911.1008)
- this turned out to be fairly limited, the track fitting software was essentially rewritten while keeping in spirit with the original library
- the new GENFIT library is now used by the Belle II collaboration as well as the PANDA and SHiP collaborations (arXiv:1410.3698)

The Complete Track Fitting Package

GENFIT handles all aspects of track fitting

Inputs

- flexible hit classes
- track candidate handling
- interfaces for interaction between hits, tracks, alignment info (e.g. wire sag)

Processing

- extrapolation code
- pluggable fitting algorithms (Kalman filter, DAF, GBL)
- combined handling of several particle hypotheses

Output

- flexible convergence criteria (e.g. were there rejected outliers?)
- storage with configurable detail (ROOT)
- interfaces to Millipede II (alignment), RAVE (vertexing)

All Detectors Tested

In 2014 we had a beam test where we could successfully establish the complete dataflow for the vertex detector including online reconstruction. (G. Casarosa's talk) This year, we are having a cosmic ray test of the CDC.

- very promising, data from a single read-out board could be reconstructed successfully
- tracks through the entire detector expected later this year

GENFIT can handle real detector data without alignment, calibrations fine.

Actual Cosmic Data with Track Candidate

Kalman Fitter

- standard track fitting algorithm
- sequential
- equivalent to LSM

Deterministic Annealing Filter (DAF)

- sequence of Kalmans
- annealing procedure for outlier rejection, ambiguity resolution
- equivalent to LSM

Generalized Broken Lines

- alternaitve to Kalman
- well suited to Millipede alignment

Series of noisy measurements.

First update of the forward fit. Position determined by first measurement.

Update. Direction determined by fist two measurements.

Update. Curvature can be determined.

Update.

Forward fit.

First update of the backward fit. Direction and momentum from forward fit used as starting value.

Update. Direction determined by last two measurements.

Update. Curvature can be determined.

Update.

Smoothed track: weighted average between forward fit and backward fit.

Smoothed track.

 $\begin{array}{lll} \beta = 3.162 & \mbox{initial weights:} & 0.5426 & 0.3640 & 6.052e-6 & 0.3913 & 0.5470 \\ \log_{10}\beta = 0.5 & \mbox{new weights:} & 0.8111 & 0.8093 & 4.106e-52 & 0.8099 & 0.8109 \\ \end{array}$

$\beta = 0.1$	initial weights:	1	1	0	1	1
$\log_{10}\beta = -1$	new weights:	1	1	0	1	1

Time per track: 20 ms disk space: unpruned/pruned

normal block

with text

alert block

with text

example block

with text