# Alignment of the ATLAS Muon Spectrometer with Tracks

Oliver Kortner

Max-Planck-Institut für Physik

Seminar über Teilchenphysik, 19.11.2008



2 Muon identification with the ATLAS muon spectrometer

3 Alignment of the ATLAS muon spectrometer with optical sensors

4 Alignment of the ATLAS muon spectrometer with tracks

# Muons at the LHC

- Muons are the only charged primary collision products traversing the calorimeters.
- $\rightarrow\,$  Clean signature of muonic final states.
  - Example physics processes with muonic final states:
    - $H \to ZZ^* \to \mu \mu \ell \ell$ ,
    - $A \rightarrow \mu \mu$ ,
    - $Z' \rightarrow \mu \mu$ .
  - Good muon identification and reconstruction is crucial for physics at the LHC.

## Characteristic muon momentum spectra



Need for efficient muon detection and identification over a wide momentum range!

# Muon identification with the ATLAS muon spectrometer

- As for other charged particles, muon momenta are determined from their deflection in a magnetic field.
- Contrary to electrons muons do not significantly lose energy by emission of synchrotron radiation.

Explanation:

Power P of emitted synchrotron radiation  $\propto$  (acceleration of the charged particle)<sup>2</sup>  $\propto \frac{1}{m^2}$ .

$$\Rightarrow \left(\frac{P_{\mu}}{P_{e}}\right)^{2} = \left(\frac{m_{e}}{m_{\mu}}\right)^{2} = \left(\frac{0.5 \text{ MeV}}{100 \text{ MeV}}\right)^{2} \sim 10^{-5}$$

# Deflection of a muon in a magnetic field

Infinitesimal path dl, B = const along dl,  $\vec{B} \perp muon$  path.



Macroscopic path, B non-uniform,  $\vec{B} \perp$ muon path.

Deflection angle 
$$\alpha = \int_{\mu \ path \ P} B \, dl = \frac{q}{p} \int_{\mathcal{P}} B \, dl.$$
  
 $\Rightarrow p = \frac{q}{\alpha} \int_{\mathcal{P}} B \, dl \Rightarrow \frac{\delta p}{p} = \frac{\delta \alpha}{\alpha} = \frac{p}{q \int_{\mathcal{P}} B \, dl} \delta \alpha.$ 

#### 1. Spatial resolution of the muon detectors

The spatial resolution of the muon detectors determines the angular resolution  $\sigma_{\alpha}$ , hence the contribution of the spatial resolution of the detector to the muon momentum resolution.

ATLAS muon spectrometer:

### 2. Multiple scattering

Multiple scattering of the muons on the nuclei of the detector material leads to an additional smearing of the measured deflection angle.

Scattering on a single nucleus



$$\theta = \frac{\Delta p_T}{p} = \frac{\bar{F} \Delta t}{p} \approx \frac{\bar{F} \cdot \frac{\Delta L}{c}}{p} \propto \frac{1}{p}.$$

### Momentum resolution and its limitations

Scattering on a many nuclei in a thin layer of a certain material



$$\Theta = \sum_{k} \theta_{k}; \ \theta_{k}: \text{ single scattering angle.}$$
$$Var \Theta = \sum_{k} Var \ \theta_{k} = N \cdot Var \ \theta \propto \frac{D}{p^{2}};$$

N: number of nuclei along the muon path  $\propto$  D.

$$\Rightarrow \ \sigma_\Theta = \sqrt{Var\,\Theta} \propto \frac{\sqrt{D}}{p} \,.$$

A more detailed calculation leads to

$$\sigma_{\Theta} = \frac{13.6 \text{ MeV}}{\beta cp} \sqrt{\frac{D}{X_0}};$$

 $X_0$ : radiation length of the material.  $\beta c \approx 1$ .

1

### Momentum resolution and its limitations

Impact of multiple scattering on the momentum resolution

$$\frac{\delta p}{p}\Big|_{mult.scatt.} = \frac{\sigma_{\Theta}}{\int\limits_{\mathcal{P}} B, dl} \cdot \frac{p}{q} = \frac{13.6 \text{ MeV/c}}{\int\limits_{\mathcal{P}} B \, dl} \sqrt{\frac{D}{X_0}} q \,, \text{ independent of } p!$$

→ The achievable maximum momentum resolution is given by  $\frac{\sqrt{D/X_0}}{\int_{\mathcal{P}} B \, dl}$ , i.e. the ratio of the material along the muon trajectory and the field integral.

ATLAS muon spectrometer

$$\frac{D}{X_0} \approx 1 \Rightarrow \left. \frac{\delta p}{p} \right|_{mult.scatt.} \approx 2\%$$

# The ATLAS detector



### The ATLAS muon spectrometer



★ Goal: Accurate momentum reconstruction up to  $p_T=1$  TeV/c.

- Air core toroid magnet to minimize multiple scattering: 2.5-7 Tm.
- 3 layers of drift-tube chambers for accurate position measurement.

### Chamber alignment requirements



• Spatial resolution of the muon chambers: 35  $\mu$ m.  $\Rightarrow \delta s$ =40  $\mu$ m.

 $\Rightarrow \delta s$ =50  $\mu$ m requires 30  $\mu$ m chamber alignment accuracy in sagitta direction.

# Optical alignment system for the muon spectrometer

# Optical alignment sensors

### RASNIK straightness monitor



### BCAM angle monitor



- 3-point imaging system.
- Accuracy of 1  $\mu$ m in transverse plane.
- Operational distance is limited by air turbulence along the optical path (~m).
- RASNIK based with CCD and lens combined in one unit.
- Accuracy of 1  $\mu$ m in transverse plane.

- Angular resolution 5 μm over a dynamic range of 40 mrad.
- Needs two light sources to measure axial displacements.
- Works over any distance.

### Chamber internal alignment system



- Inplane system monitors deformations of the muon chambers.
- Based on 4 RASNIK sensors.
- Calibrated during chamber assembly.
- Precision:  $\sim 10 \ \mu m$ .

# The barrel optical alignment monitoring system



#### 4 systems

- Projective: Measurement of chamber movements in sagitta direction.
- Axial/praxial: Measurement of the aplanarity of layers of muon chambers.
- Reference: Measurement of coil movements and chamber positions with respect to the coils.
- Chamber-to-chamber: Measurement of movements of chambers without projective alignment.

### End-cap reference grid



- Alignment bars (black) are instrumented with internal RASNIKs and temperature sensors for the determination of their shape.
- Polar bar-to-bar BCAM lines (green, blue and yellow) form a quasi-projective layout of light rays.
- Azimuthal bar-to-bar BCAM lines (red) control relative positions of bars within one layer of endcap muon stations.

### End-cap chamber-to-bar alignment



- Pairs of adjacent small and large chambers form a logical unit.
- Two proximity sensors on ?bar-sides? of each chamber measure displacements with respect to alignment bars.
- Connection between a small and a large chamber maintained by one proximity sensor and one azimuthal BCAM pair (monitor of out-of-plane movements in the overlap region).

# Alignment of the ATLAS muon spectrometer with tracks

### Nonrecurring track alignment task

### Calibration of the optical alignment monitoring system

- Barrel
  - Calibrated optical system.
  - $\rightarrow$  Absolute alignment accuracy  $\leq 100 \ \mu m$ .
    - 30  $\mu$ m absolute alignment accuracy requires calibration with tracks.
- Barrel
  - Absolute optical alignment  $\sim 100 \ \mu m$  in most of the parts.
  - Absolute optical alignment  $> 500 \ \mu m$  in some areas where sensor mounting platform positions are not known with sufficient accuracy.
- $\rightarrow$  Alignment with straight tracks needed for 100  $\mu m$  and 30  $\mu m$  absolute alignment accuracy to be provided in a special run with no toroidal field.

#### Overlap alignment

Alignment of barrel muon chambers with partial sets of optical sensors (small barrel, BEE, and BIS8 chambers).

 $\rightarrow\,$  These chambers must be aligned with respect to optically aligned chambers using muon tracks in the overlap regions.



### Barrel end-cap alignment

Alignment of the endcaps with respect to the barrel for the muon spectrometer.

## Alignment of two chambers with straight tracks



• Straight muon track through two chambers.



- Straight muon track through two chambers.
- Reconstruct track segments in both chambers.
- Use the track segments to determine the position and orientation of the upper chamber with respect to the lower chamber.



- $\delta_{\alpha}$  from difference of reconstructed slopes.
- $\delta_y$ ,  $\delta_\gamma$ : Plot  $\Delta y(D)$  versus x.  $\rightarrow$  Straight line with intercept  $\delta_y$  and slope  $\delta_\gamma$ .
- $\delta_z$ ,  $\delta_\beta$ : Measurement required angular spread of the tracks (Var $(m_{up})>0$ ).

- $m_{down} m_{up} = \delta_{\alpha}$  for perfect angular resolution.
- $< m_{down} m_{up} >= \delta_{\alpha}$  for limited angular resolution  $\sigma(m) \approx 4 \cdot 10^{-4}$ .
- Required accuracy  $\sigma(\delta_{\alpha})$ :  $D\sigma(\delta_{\alpha}) \lesssim 30 \ \mu \text{m} \Rightarrow \sigma(\delta_{\alpha}) < \frac{30 \ \mu \text{m}}{D(\approx 5 \ \text{m})} = 0.6 \cdot 10^{-5}$ .
- Required number of tracks N:  $\frac{\sigma(m)}{\sqrt{N}} \le 0.6 \cdot 10^{-5} \Rightarrow N \ge 10^4$ .

 $\Rightarrow~12\cdot 10^4 \sim 10^5$  straight muon tracks needed for the alignment of a sector.

# Alignment of an entire sector

• The chamber positions and orientations are determined by minimizing the sum of the track  $\chi^2$ s in the chamber positions and orientations.

• Track  $\chi^2$ :

$$\sum_{h its \ h} \frac{[r(t_h) - d_h]^2}{\sigma_h^2};$$

 $r(t_h)$ : drift radius of the hth hit;

 $d_h\colon$  distance of the track from the wire of the  $h{\rm th}$  hit tube.

• The Euclidian distance  $d_h$  is non-linear in the track and alignment parameters.



Linearization by change to track reference frame:

- $r(t_h) \rightarrow y'_h = \pm r(t_h).$
- $d_h \to y'_h = \pm d_h$ .
- $\rightarrow$  Analytic solution of the  $\chi^2$  minimization.

# Monte-Carlo test of the straight-track alignment



 100,000 straight muon tracks per barrel sector.

$$p_T = 20 \text{ GeV/c.}$$

### Measurment of horizontal chamber displacements



- Angular spread of projective tracks in tower overlaps too small ⇒ system underconstrainted.
- Constraints from optical axial system on the difference in height between two adjacent chambers solve the problem.

# Performance of the straight-track alignment method

- Successful on MC data samples of 20 GeV projective straight muon tracks and on cosmics commissioning data.
- Accuracy of the alignment correction on the sagitta. Monte-Carlo, pp collisions Cosmic commissioning data 80 <sup>140</sup> 120 م o [µm] Large Sector Sector 5A 70 Small Sector Sagitta Sagitta 60 correction correction 100 50 80 40 η=0  $\eta = 1$ 60 30 40 20 20 10 station index station index

MC sample of ~100,000 projective tracks

 $\sim$ 400,000 cosmic muon tracks

- Require statistics for 30  $\mu$ m alignment accuracy:
  - 100,000 20 GeV projective tracks per barrel sector.
  - $\bullet \ {\sim}1$  million cosmic tracks for top and bottom barrel sectors.

## Comparison with mechanical measurements

Interchamber distances were measured for the inner and outer chambers of the top barrel sector.

#### Measured distances



#### Outer chambers

• Excellent agreement of track alignment and mechanical measurements.

• 
$$\sigma(d_{tracks} - d_{mech.}) = 85 \ \mu m.$$

### Inner chambers

- Track alignment and mechanical measurements are correlated.
- $< d_{tracks} d_{mech.} >=$ -190 µm caused, most likely, by solid spacer between innner chambers deforming tubes (remeasurement planned).



# Alignment with overlap tracks



### Results of a Monte-Carlo study



- Measurement of the muon momentum with the optically aligned part of the spectrometer.
- Extrapolation of the muon trajectory to the unaligned chambers in the overlap region.
- The results of the track alignment is provided to the optical alignment system as pseudo-sensor data.

- Shifts of small chambers well monitored.
- 10,000 20 GeV overlap tracks needed for 10  $\mu$ m accuracy.
- $\rightarrow$  A dedicate overlap muon stream at 200 Hz will be provided at the end of the muon trigger.

# Sector alignment with curved tracks

- Alignment with curved tracks difficult due to limited redundancy in the muon momentum measurement.
- Redundancy in the momentum measurement



Barrel and end caps:

- Sagitta.
- Deflection angle.

#### Barrel

- Curvature of muon trajectory in the middle chambers for  $p_T \lesssim 6$  GeV.
- Preliminary result of Monte-Carlo studies:
  - Momentum measurement in the middle chamber of limited use due to high sensitivity to distortions of the chamber geometry and the space drift-time relationship.
  - Alignment accuracy of 30  $\mu$ m hard to achieve with curved tracks.
  - 100  $\mu \rm m$  alignment accuracy seems feasible, sufficient for monitoring the geometry.
- Studies ongoing.

- The chambers of the ATLAS muon spectrometer need to be aligned with 30  $\mu$ m accuracy to provide 10% momentum resolution at 1 TeV.
- Relative movements of the muon chambers are monitored by optical alignment sensors with the required accuracy for most of the spectrometer.
- Gaps in the acceptance of the optical system have to be aligned with curved muon tracks with respect to optically aligned parts of the spectrometer.
- The absolute alignment of the chambers will be determined in a special run with no magnetic field at the start of ATLAS.
- The top and bottom of the barrel muon spectrometer are well illuminated with cosmic muons which are used to align these regions with the required accuracy.
- Curved alignment procedures to monitor the geometry during LHC operation are under development.