Measurement of the τ -jet performance with first ATLAS Data

Thies Ehrich

Max-Planck-Institut für Physik (Werner Heisenberg Institut) München

Physics at the Large Hadron Collider 3-Dec-2008

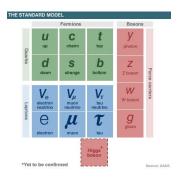


Table of Content

- τ -Leptons in the SM
- \bullet τ -jet Identification
- Perfomance with first Data
- Application to a H[±] Analysis
- **10** Conclusion and Summary

The Standard Model of Particle Physics

- Theory of three of the four known fundamental interactions
- Gauge Symmetry with the gauge group SU(3)xSU(2)xU(1)
- All experimental tests agreed with its predictions
- Higgs Boson not directly observed (yet)

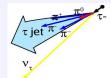
τ -Leptons in the SM

Main Properties of the τ -Lepton

- large mass: m_{τ} =1.778 GeV
- measureable lifetime: $c\tau$ =87.11 μ m
- decay modes are well understood from previous experiments

Decay modes

• 35% leptonic:

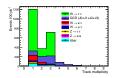

$$\circ \tau \to e \nu_{\tau} \nu_{e}$$

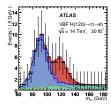
$$\circ$$
 $\tau \to \mu \ \nu_{\tau} \nu_{\mu}$

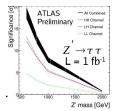
• 65% hadronic:

$$\circ$$
 $\tau^+ \rightarrow \pi^+ \nu_{\tau} n\pi^0$

$$\circ \ \tau^+ \to \pi^+ \ \pi^- \pi^+ \ \nu_\tau \ n \pi^0$$

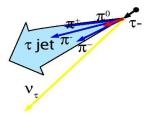



 \Rightarrow Focus in this talk: hadronic τ -decays


Why are τ s important?

- SM: large number of taus already at very early data taking (e.g. $W \rightarrow \tau \nu$)
- Important for the discovery of Higgs Bosons
 - \circ H $\rightarrow \tau\tau$ (Standard Model Higgs)
 - \circ A $\rightarrow \tau\tau$ (MSSM Higgs)
 - \circ H $^{\pm}$ $\rightarrow au
 u$ (MSSM charged Higgs)

• are used in many new physics searches like $7' \rightarrow \tau \tau$



τ -jet Reconstruction with ATLAS

au-jet in the ATLAS detector

- collimated calorimeter cluster
- low charged tracks multiplicity
- displaced secondary vertex

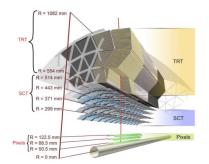
Two complementary au-jet reconstruction algorithms:

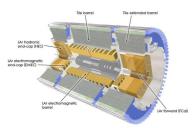
- Main sources of τ -fakes
 - jets from light quarks
 - electrons
 - muons

- track-based: uses tracks as initial reconstruction seed
- calorimeter-based: uses calorimeter cluster as initial seed

ATLAS Tracking and Calorimetry

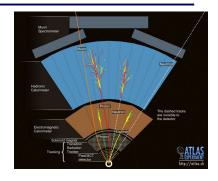
ATLAS Inner Detector


o Pixel: 140M channels. 2.3 m²

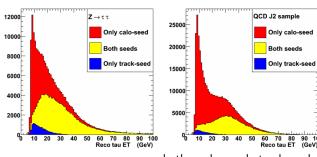

SCT: 6.2M channel, 61.3 m²

o TRT: 420k channels

ATLAS Calorimeters


- o EM calo (lead/Liquid Argon)
- hadronic barrel calo (iron/plastic,LAr)
- hadronic endcap calo (copper/LAr)
- o forward calo (tungsten/LAr)

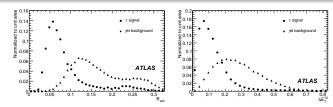
τ -jet Reconstruction with ATLAS (2)


- for each track seed a calorimeter cluster is searched
- if a cluster is found calorimeter
 -based reconstruction is run
- if no jet found, the candidate is track seeded only
- use remaining jets for the calorimeter-based reco only

In case of 2:

- the position of the candidate is defined by the track
- energy of the candidate is defined by the calorimeter-based candidate
- the track multiplicity is defined by the track-based candidate

Reconstruction Performance



		both seeds	only track-seed	only calo-seed
Signal	Reconstructed	50%	5%	45%
	Matched to Truth	75%	<1%	25%
QCD	Reconstructed	3%	33%	64%

- efficiency loss by selection both seed
- but much lower risk of selection background events

τ -Identification: tauRec (calo seed)

Both algorithms produce a set of identification variables:

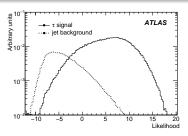
EM radius

$$R_{EM} = \frac{\sum\limits_{cells} E_{T_i} \sqrt{(\eta_i - \eta_{cluster})^2 + (\phi_i - \phi_{cluster})^2}}{\sum\limits_{cells} E_{T_i}}$$

EM radius explores the smaller transverse shower porfile of the au-jet wrt. to jets.

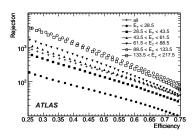
Isolation Fraction

$$\Delta E_{T}^{12} = \frac{\sum\limits_{cells}^{0.1 < \Delta R < 0.2} E_{T}}{\sum\limits_{cells}^{\Delta R < 0.4} E_{T_{j}}}$$


au-jets are well collimated and have to be isolated

au-Identification: Likelihood

The discriminating variables are combined to a likelihood function


The Likelihood Function

- each of the variables represents a probability density function (pdf) once it is normalized
- the pdf's can be multiplied in order to combine them
- for some reason many people use logarithms though: $L=\Pi$ $f(x;p_T)$, or log $L=\sum \log f(x;p_T)$

In this study, τ -jets are identified using a likelihood cut Ilh>4.

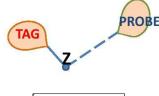
Efficiency and Rejection

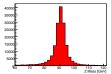
Definition of Efficiency using MC truth

 $E_{MC} = \frac{\# \text{ identified taus matched to generated taus}}{\# \text{generated taus}}$

Definition of Rejection using MC truth

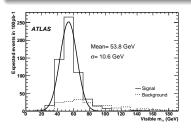
 $R_{MC} = \frac{\# generated \ non-taus}{\# identified \ taus \ matched \ to \ generated \ non-taus}$


Efficiency Measurement with real Data


- * Simulated data suffers from large uncertainties.
- * Two of these are the au reconstruction efficiency/rejection

To measure the efficiency from data, one usually uses the tag-and-probe method:

The tag-and-probe method


- look for $Z \rightarrow \tau \tau \rightarrow lep+jet$
- o select only events with well reconstructed muon
- $\circ \Rightarrow$ this muon is our tag particle
- o look for a jet, which fits to the Z mass
- $\circ \Rightarrow$ this jet has to be a τ !
- \circ check, if this jet is identified as a τ (by IIh cut)

$\mathbf{Z} \rightarrow au_{\mathsf{had}} l$

In principle we can now calculate the efficiency by #taus/#jets

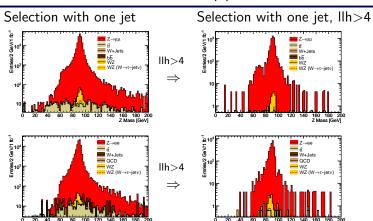
 the measurement is not free of background

Cuts

- Isolated Lepton
- Missing Energy
- Low Activity
- b-jet Veto
- \circ (τ -Id cuts)

 we can estimate the background by selecting particles with same electric charge (charges if main backgrounds QCD and W+Jets are uncorrelated)

Rejection Factors from $Z \rightarrow \mu\mu$,ee+Jets

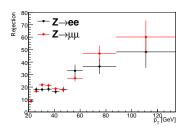

Idea

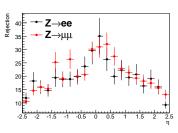
- Select Z events with an accompanying jet (Backgrounds: tt̄, bb̄,...)
- Look at this accompanying jet:
- If backgrounds (including real τ s) is small this jet is not a τ -jet
- Check if the jet is identified as a τ -jet (IIh>4) \Rightarrow fake τ -jet

Process	Generator	DS	# Events	$Lumi/pb^{-1}$
Z→ ee	Pythia	5144	415k	237
$Z \rightarrow \mu \mu$	Pythia	5145	420k	232
Dijets	Pythia	5802	2.25M	0.012
tī	Mc@NLO	5200	988k	2189
ЬБ	Pythia	5701/14	260k	
WZ	Herwig	5987	50k	3055
W+Jets	Alpgen	6108-12	110k	11,30,150,520,475

Cuts for the Z selection: trigger, two (isol.) leptons, exactly one jet, Z mass window

Invariant Mass $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$




- The background contribution is smaller than 0.2%
- In addition only the backgrounds with real τ contribution introduce an error on the rejection rate measurement (shown for WZ $\rightarrow \tau_{had} \nu \ ll$)

Rejection Factors in Z Events

Plot rejection in bins of p_T and η

- p_T=momentum in transverse plane
- η =-In tan($\theta/2$), θ is the polar angle

Overall Results						
Process	Data	MC				
Z→ ee	19.47 ± 0.72	19.54±0.72				
$Z \rightarrow \mu \mu$	$20.61 {\pm} 0.58$	20.73 ± 0.59				

- Rejection in Z→ee slightly lower (electron contamination)
- Might be cured by tighter e-ID

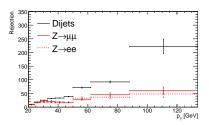
Rejection Factors in QCD events

Reminder:

$$\text{Rejection} = \frac{\text{fake } \tau\text{-jets}}{\text{non-}\tau\text{-jets}}$$

QCD events

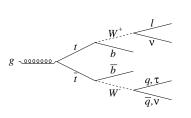
- \circ process with overwhelming cross section (10⁸ pb) at LHC: pp \rightarrow jetjet (Di-jets)
- o these jets stem mostly from gluons
- this channel is automatically backgound free
- take the jet that triggered the event as a tag jet and probe the other one

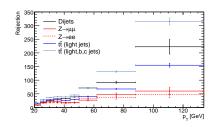


Comparison with Z+Jet Events

Dijets are complementary to Jets in Z events:

⇒ Dijets: mainly gluon\photon-jets

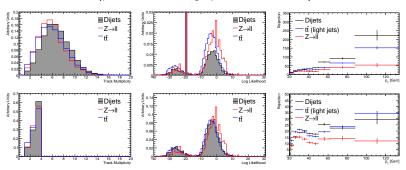

⇒ Z+Jets: mainly quark-jets



- Rejection much higher for dijets (pdf's trained with dijets)
- deviation gets more pronounced for high p_T

Comparison with tt **Events**

How does the measured rejection from dijets and Z+jets compare to the one in $t\bar{t}$ (based on MC truth in $t\bar{t}$) ?

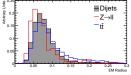


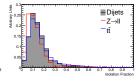
- remove b- and c-jets from tt
 to avoid bias
 (heavy flavour jets have much higher rejection factors)
- tt̄ light jets show higher rejections than Z+jets, but are still below dijets

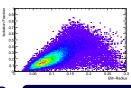
Track Multiplicity for high p_T

Why is the rejection higher for dijets in high p_T bins?

(plots shown for high p_T bin 88-134 GeV)




- more tracks in dijets → additional rejection power
- after cut on track multiplicity small shifts are visible in Ilh:
 - o tt shifted to smaller values
 - Z jets shifted to higher values

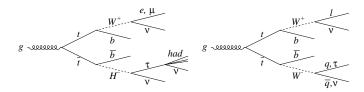

Rejection in p_T , EM-Radius Bins

Which IIh variables contribute to the remaining variations?

- shift of the em radius and isolation fraction distribution in opposite directions
- both variables are correlated, though

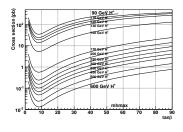
EM radius

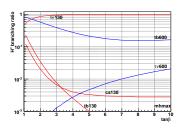
$$R_{EM} = \frac{\sum\limits_{cells} E_{T_i} \sqrt{(\eta_i - \eta_{cluster})^2 + (\phi_i - \phi_{cluster})^2}}{\sum\limits_{cells} E_{T_i}}$$


Isolation Fraction

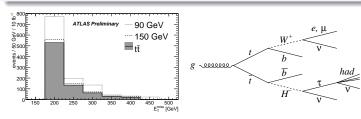
$$\Delta E_T^{12} = \frac{\sum\limits_{cells}^{0.1 < \Delta R < 0.2} E_{T_i}}{\sum\limits_{cells}^{\Delta R < 0.4} E_{T_j}}$$

An Application: $\mathbf{H}^{\pm} \rightarrow \tau \nu$


Charged Higgs Bosons


- H[±] appear in models with an extended Higgs Sector
 - SM like with two Higgs Doublets
 - Minimal Supersymmetric extension of the SM (MSSM)
- \bullet after the electro weak symmetry breaking five physical Higgs Bosons remain: A,H,h,H $^\pm$
- a discovery of H[±] would be a clear sign of physics beyond SM

Production and Decay of H[±]


- H[±] is produced in decays of the top quarks (if light enough)
- high cross sections upto 100 pb (10% of SM tt̄)
- H $^{\pm}$ deacys nearly exclusivly into $\tau \nu$ (if light enough)
- competes with SM decay W $\rightarrow \tau \nu$ (Br=11%)
- it would be detectable as an excess of τ s in $t\bar{t}$ events

E^{miss} after all Cuts

After the selection cuts, we look into the excess of events in the $\mathsf{E}_{\scriptscriptstyle T}^{miss}$ distribution:

- Here the tt contribution was just taken from MC
- But one should rather estimate the SM tt contribution from the data itself.
- ullet Lets assume we know the contribution from $t \bar{t} \! o (au
 u b) (l
 u b)$
- \Rightarrow How to estimate the contribution from fake taus? e.g. $t\bar{t} \rightarrow (qqb)(l\nu b)$

Towards tī Fakerate

Number rec. and id. taus/jets

$$N_{reco} = N_{reco}^{\tau} + N_{reco}^{jets}$$

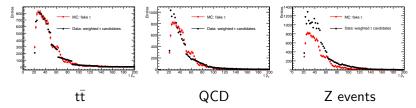
$$N_{ID} = N_{ID}^{\tau} + N_{ID}^{jets}$$

Define efficiency and rejection

$$e = \frac{N_{ID}^{\tau}}{N_{reco}^{\tau}}, \ r = \frac{N_{ID}^{jets}}{N_{reco}^{jets}}$$

With these definitions one calculates the number of fake τ -jets:

$$N_{ID}^{jets} = \frac{r}{e - r} (eN_{reco} - N_{ID})$$


- Already seen: e and r are not constant.
- \Rightarrow Parametrize as before and define τ -weights:

$$\begin{array}{l} \omega = \frac{r}{e-r}(e-1) \; [\tau \; \text{is identified}] \\ \omega = \frac{r}{e-r}(e-0) \; [\tau \; \text{is not identified}] \end{array}$$

Then the number of misidentified taus is $N_{ID}^{jets} = \sum^{N_{reco}} \omega_i$

Fake τ -p_{τ} from data

- Efficiency: taken from MC (for now ...)
- Rejection: taken from MC (for tt), data (for QCD, Z events)

- Estimation of fake τ -jets in $t\bar{t}$ events well under control
- Space for improvement using em radius bins
- This can be done if there is more statistics available

Conclusion and Summary

- ullet au-jets might be the key to Higgs and new Physics beyond SM
- the identification works with a likelihood function combining several discriminating variables
- the identification efficiency and rejection can be determined directly from the data using Z and QCD events
- \bullet this can be used to estimate backgrounds in difficult channels like $t\bar{t}$