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Higgs analysis : brief reminder 

Higgs search at LHC will exploit a number of statistically independent 
decay channels 

We consider 4 search channels for the Standard Model Higgs boson: 
  H → τ+τ−
  H → W+W− → eνµν
  H → γγ
  H → ZZ(*) → 4ℓ

focusing on the search in the low mass range 

Aim to provide a single measure of the significance of discovery or 
limits on Higgs production
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Introduction: The Profile Likelihood method 

 Approach based on frequentist statistical methods

 A generic framework for estimating statistical significances of 
discovery and exclusion limits in presence of background (and 
signal) uncertainties ( shape, normalization,...)

  Allows treatment of systematic errors, Monte Carlo statistics, 
etc...

 Combination of different channels with common / independent 
systematic errors 

Detailed explanation for the simplest ‘physics’ case : 
single search channel and fixed Higgs mass
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The statistical model : single search channel
The measurement results in a set of numbers of events found in kinematic 

regions where signal could be present

These typically correspond to a histogram of a variable such as the mass of 
the reconstructed Higgs candidate

reconstructed H → 4! mass after full event selection

mH = 300GeV

Number of entries in bin i , ni , 
modeled as a Poisson variable with 

mean value 

E[ni] ≡ µsi + bi

si : expected number of signal events
bi : expected number of background events
µ : signal strength parameter
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For the ith bin of an histogram of a discriminant variable x si and bi can be written

The statistical model : signal and background

si = stot

∫

bin i
fs(x; !θs) dx bi = btot

∫

bin i
fb(x; !θb) dx
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For the ith bin of an histogram of a discriminant variable x si and bi can be written

The statistical model : signal and background

si = stot

∫

bin i
fs(x; !θs) dx bi = btot

∫

bin i
fb(x; !θb) dx

stot and btot : total expected numbers of events in the histogram
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For the ith bin of an histogram of a discriminant variable x si and bi can be written

The statistical model : signal and background

si = stot

∫

bin i
fs(x; !θs) dx bi = btot

∫

bin i
fb(x; !θb) dx

stot and btot : total expected numbers of events in the histogram

stot : signal normalization fixed equal to SM prediction
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For the ith bin of an histogram of a discriminant variable x si and bi can be written

The statistical model : signal and background

si = stot

∫

bin i
fs(x; !θs) dx bi = btot

∫

bin i
fb(x; !θb) dx

stot and btot : total expected numbers of events in the histogram

fs(x; !θx) and fb(x; !θb) are the probability density functions (pdfs) of x for
signal and background

stot : signal normalization fixed equal to SM prediction
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For the ith bin of an histogram of a discriminant variable x si and bi can be written

The statistical model : signal and background

si = stot

∫

bin i
fs(x; !θs) dx bi = btot

∫

bin i
fb(x; !θb) dx

stot and btot : total expected numbers of events in the histogram

fs(x; !θx) and fb(x; !θb) are the probability density functions (pdfs) of x for
signal and background
!θs and !θb : set of shape parameters

  nuisance parameters : 

all parameters in a statistical model that are not 
of interest by itself but whose unknown values 
are needed to make inferences about significant 

variables under study (systematic errors)   

stot : signal normalization fixed equal to SM prediction
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For the ith bin of an histogram of a discriminant variable x si and bi can be written

The statistical model : signal and background

si = stot

∫

bin i
fs(x; !θs) dx bi = btot

∫

bin i
fb(x; !θb) dx

stot and btot : total expected numbers of events in the histogram

fs(x; !θx) and fb(x; !θb) are the probability density functions (pdfs) of x for
signal and background

stot : signal normalization fixed equal to SM prediction

How the probability density functions can be determined ?  
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The probability density functions
parametric forms of the pdfs are determined from Monte Carlo 

simulations or data control samples 

an example of signal pdf

mH = 600GeVH → 4!

signal modeled by a relativistic 
Breit-Wigner convoluted with a 
Gaussian + Fermi function to 

describe the tail 

For low masses (mH ≤ 300 GeV)
signal modeled by a Gaussian
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The probability density functions
an example of background pdf

m4! (GeV)

f(MZZ) =
p0

(1 + e
p6−MZZ

p7 )(1 + e
MZZ−p8

p9 )
+

p1

(1 + e
p2−MZZ

p3 )(1 + e
p4−MZZ

p5 )

main background for H → 4! channel: irriducible ZZ → 4! process

background modeled by a 
combination of Fermi functions 

suitable to describe the plateau in 
the low mass region and the broad 

peak corresponding to the second Z 
on shell and the tail at high masses

For very low masses relevant also Zbb 
background modeled by a Fermi function

(like 2nd term in the above formula)
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Background measurement
expected background can be predicted using MC models for SM processed 

systematic uncertainty in the SM prediction is in 
many cases quite large

it would severely limit the sensitivity of the search  

sideband region used to constraint the 
background in the signal region

subsidiary measurements !m = (m1, ....,mN )

These can be modeled with a Poisson distribution with 
E[mi] = ui(!θ)

provide information on the bkg normalization 
btot and sometimes also on its shape

If measurement based on counting events in a given kinematic region → no use 
of the distribution shape → histogram with a single bin 

E[mi] = u = τb τ =scaling constant
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The statistical model : likelihood function
 The single - function likelihood uses Poisson model for events in 

signal and control histograms  

L(µ, !θ) =
N∏

j=1

(µsj + bj)nj

nj !
e−(µsj+bj)

M∏

k=1

umk
k

mk!
e−uk

µ signal strength parameter :
✤ µ = 0  background only
✤ µ = 1 signal rate expected from the SM

for a fixed Higgs mass 
the only parameter of interest is µ

Equivalently the log-likelihood is

lnL(µ, !θ) =
N∑

j=1

(nj ln(µsj + bj)− (µsj + bj)) +
M∑

k=1

(mk lnuk − uk) + C

Terms not dependent 
on parameters

Log-likelihoods are conceptually no different to normal likelihood.
Working with natural log of likelihood to “makes life a little easier”
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How to include systematic uncertainties?
 Systematic errors can be included in the analysis through the 

nuisance parameters 

signal efficiencyExample: s = LεσBR

Suppose the efficiency estimated to have a value ε̂± σε̂

To incorporate this uncertainty into the model
measured value ε̂ treated as random variable true value ε as a nuisance parameter

fε(ε̂; ε, σε̂) ∼ 1√
2πσε

e−(ε−ε̂)2/2σεAppropriate choice of the pdf

15



How to include systematic uncertainties?
 Systematic errors can be included in the analysis through the 

nuisance parameters 

signal efficiencyExample: s = LεσBR

Suppose the efficiency estimated to have a value ε̂± σε̂

To incorporate this uncertainty into the model
measured value ε̂ treated as random variable true value ε as a nuisance parameter

Appropriate choice of the pdf Beta distribution to satisfy constraint 0 ≤ ε ≤ 1
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How to include systematic uncertainties?
 Systematic errors can be included in the analysis through the 

nuisance parameters 

signal efficiencyExample: s = LεσBR

Suppose the efficiency estimated to have a value ε̂± σε̂

To incorporate this uncertainty into the model
measured value ε̂ treated as random variable true value ε as a nuisance parameter

Appropriate choice of the pdf fε(ε̂; ε, σε̂)

L(µ, !θ) =
N∏

j=1

(µsj + bj)nj

nj !
e−(µsj+bj)

M∏

k=1

umk
k

mk!
e−ukfε(ε̂; ε, σε̂)
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The method of Maximum Likelihood

The method of maximum likelihood (ML) is a technique for estimating the 
values of the parameters given a finite sample of data.

The ML estimators (MLE) for the parameters are those which maximize
the (log-)likelihood function
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Test statistic
The goal of a statistic test is to make a statement about how well the observed 

data stand in agreement with given predicted probabilities i.e. a hypothesis

The hypothesis under consideration is traditionally called the 
null hypothesis H0

In our case the null hypothesis H0 correspond to the 
“background only” hypothesis µ = 0 (no Higgs signal present)

The statement about the validity of H0 often involves a comparison with an 
alternative hypothesis H1

In our case the alternative hypothesis H1 correspond to the 
signal + background hypothesis µ = 1 (at the SM rate)

To investigate the measure of agreement between the observed data and a 
given hypothesis one constructs a function of the measured variables 

called a test statistic
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Profile Likelihood Ratio
To test hypothesized value of µ we construct the profile likelihood ratio

λ(µ) =
L(µ,

ˆ̂
"θ)

L(µ̂, "̂θ)

•
ˆ̂
!θ is the value of !θ maximizing L for a given µ → means fitted values
for a fixed µ

• θ̂ and µ̂ are the full maximum likelihood estimators→ values from best
fit with floating µ

Equivalently it’s convenient to work with the quantity qµ = −2lnλ(µ)

Data agree well with hypothesized µ → qµ small
Data disagree with hypothesized µ → qµ large 

0 ≤ λ ≤ 1
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p-values   
express the “goodness of fit”, i.e. the level of compatibility between data 

that give an observed value qµ,obs for qµ and a hypothesized value of µ

probability under the assumption 
of µ to observe data with equal or 
lesser compatibility with µ relative 

to the data we got 

pµ =
∫ ∞

qobs

f(qµ|µ) dqµ

This is NOT the probability that µ 
(hypothesis) is true ! 

f(qµ|µ) is the sampling distribution of qµ

f(qµ|µ)

f(qµ|µ′)
med[qµ|µ′]

qµ,obs
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p-values   

f(qµ|µ)

f(qµ|µ′)
med[qµ|µ′]

qµ,obs

• µ refers to the strength parameter
used to define qµ, entering in
the numerator of λ(µ)

• µ′ is the value used to define the data
generated to obtain the distribution
(i.e. the true value)

f(qµ|µ) indicates the pdf of qµ for data generated with the same µ used to define
qµ → µ′ = µ → pdf limiting form related to χ2 distribution

f(qµ|µ′) indicates the pdf of qµ for data generated with a different value of the
strength parameter→ µ′ "= µ→ distribution shifted to higher values→ decrease
of agreement between generated data with µ′ and the hypothesis tested by qµ

med[qµ|µ′] is the median value of qµ under the assumption of a differen value of
the strength parameter µ′ used to generate data
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Significance    
The significance corresponding to a given p-value can be defined as

i. e. the number of standard deviation Z at which a Gaussian random 
variable of mean = 0 would give a one-sided tail area equal to p

p =
∫ ∞

Z

1√
2π

e−x2/2 dx = 1− Φ(Z)Z Z = Φ−1(1− p)Z

A significance of 
Z = 5 (discovery) 

correspond to 
p = 2.87× 10-7  
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Discovery and exclusion limits  
Discovery

Try to reject the background only 
hypothesis µ = 0 

If the data include signal we expect 
to find a low value of λ(0) → large q0
NOTE: q0 depends on hypothesized 
mH through the denominator of λ(µ)

(we’re considering a fixed mH)

A given dataset will result in an 
observed value q0,obs of q0

p0 =
∫ ∞

q0,obs

f(q0|0) dq0

Small p0 is evidence against µ=0 → 
discovery of the signal

Exclusion
Try to reject an alternative 

hypothesis of some µ ≠ 0 
at a certain confidence level (CL),

NOTE: if reject µ=1 at a certain CL 
then the corresponding mH is 

regarded as excluded for a SM Higgs.

A p-value is computed ∀ µ and the set 
of µ for which p-values ≥ fixed values 
1- CL form a confidence interval for µ

  Tipically one takes a 95% CL 
The upper end of the interval µup is the 

upper limit (µ ≤ µup @ 95% CL) →
largest value of µ for which p-value is 

at least 0.05
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Discovery and exclusion sensitivity 
Discovery

To quantify our ability to discover an 
hypothesized signal in advance of 
seeing the data we calculate the 
median significance under the 

assumption µ=1 
(signal presence at SM rate)

Zmed = Φ−1(1− p0(q0med))

Generate data under s+b (µ=1) hypothesis
Test the hypothesis µ=0 → q0med → 

p-value  → Zmed

How to do it ?

Exclusion

The median limit under the assumption 
that there is no Higgs is also interesting

Generate data under background only 
(µ=0) hypothesis 

Test the hypothesis µ=1 → if µ=1 has a 
p-value < 0.05 exclude mH @ 95% CL

How to do it ?

Estimation of median significance (limit) computationally difficult (large number of repeated 
simulation based on full PL) 

Use an approximation technique to estimate it quickly
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The ‘Asimov’ datasets 
Remember : plan of a Higgs search combining multiple channel

one must carry out the global fit → combine the likelihood functions 

Name inspired by the short story
Franchise by Isaac Asimov :
in it, elections are held by
selectiong a single voter to
represent the entire electorate

L(µ, !θ) =
∏

i

Li(µ, !θi)

Possible to find median sensitivity corresponding to a global fit without 
performing a global fit combining results from individual channels using a 

“special dataset ” called “Asimov dataset”

channels are statistically indipendent

and use the full likelihood containing a single µ to find the PL ratio

Dataset in which all statistical fluctuations are suppressed (no stat. errors) 
and the data value    and     replaced by their expectation values for a given 

luminosity and a hypothesized µA

!n !m
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The ‘Asimov’ datasets 
The estimate of the median likelihood ratio for the ith channel is 

λA,i(µ) =
LA,i(µ,

ˆ̂
"θ)

LA,i(µ̂, "̂θ)
≈ LA,i(µ,

ˆ̂
"θ)

LA,i(µA, "θMC)
µ̂ ≈ µA

For the combination λA(µ) =
∏

i

λA,i(µ)

method provides only an estimate of the median likelihood ratio :  
uncertainties band on the expected median sensitivities as 

 function of mH obtained only with large number of pseudo-experiment

on real data discovery and exclusion determination require the use 
  of the global fit 

limitations
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Sampling distribution  
To compute p-value of a hypothesized µ the sampling distribution f(qµ|µ) is needed

To claim a 5σ discovery p-value p0 should be 2.87× 10-7  → to estimate this using 
Monte Carlo we need to generate 108 pseudo-experiment (for each point in the 

parameter space and each luminosity)  

Wilk’s theorem 
In large sample limit f(qµ|µ) for an hypothesized value of µ approaches the χ2

distribution for one degree of freedom (n parameters of interest→χ2 for n d.o.f.)

f(qµ|µ) = wfχ2
1
(qµ) + (1− w)δ(qµ) with w = 1

2 (half χ2 distribution)

Assuming this form Zdiscovery ≈
√
−2lnλ(µ = 0) Zexclusion ≈

√
−2lnλ(µ = 1)
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distribution of q0 under the µ = 0 hypothesis

Validation studies  
The validation of the approximations has been investigated 

for each channel by generating distribution of qµ for µ = 0,1 using toy-MC 
and comparing the resulting histograms with the expected asymptotic form  

signal and background pdf to generate toy-MC 
(example in the next slide):

• µs+b sample to study qµ distribution
• background only sample to study q0 distribution

Validation exercise show approximation is ok 
for an integrated luminosity ≥ 2 fb-1

  For lower luminosity MC needed to get f(qµ|µ)
(feasible for exclusion limit @ 95% CL) 
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Example of pseudo-experiment for H →4ℓ channel  

pseudo-experiment corresponding to
30 fb−1 of data for mH = 130 GeV

pseudo-experiment corresponding to
30 fb−1 of data for mH = 180 GeV
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inclusion of systematic uncertainties
decreases the signal significance
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Results of combination  

Plots in the following  are not “official” ATLAS results
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Combined discovery sensitivity   

5σ
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Combined exclusion sensitivity   
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Conclusions  

 statistical method for combination of (a subset of) SM Higgs search 
channel 

treats systematics by means of profile likelihood method 

 considered fixed mH hypothesis: for floating mass scenario → Wilk’s 
theorem not valid anymore, significance degradation, results depend strongly  
on fit range   

some approximation used for discovery/exclusion significance

 does not represent final word on methods → other developments 
ongoing ( Bayesian, Confidence Levels, look-elsewhere effects,...)
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Variance of estimators : MC method 
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Variance of estimators : graphical method
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Bayesian vs. Frequentist method 
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Frequentist statistic - general philosophy 
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Bayesian statistic - general philosophy 
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Systematics and nuisance parameters
Example: fitting a straight line 
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Systematics and nuisance parameters
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