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Higgs analysis : brief reminder

Higgs search at LHC will exploit a number of statistically independent
decay channels

We consider 4 search channels for the Standard Model Higgs boson:
H—o 11

H—> W"W™ — evuv

Ll

H— 77" — 4¢

focusing on the search in the low mass range

Aim to provide a single measure of the significance of discovery or
limits on Higgs production




Introduction: The Profile Likelihood method

@ Approach based on frequentist statistical methods

@ A generic framework for estimating statistical significances of
discovery and exclusion limits in presence of background (and
signal) uncertainties ( shape, normalization,...)

¢ Allows treatment of systematic errors, Monte Carlo statistics,
ete...

¢ Combination of different channels with common / independent
systematic errors

Detailed explanation for the simplest ‘physics’ case :
single search channel and fixed Higgs mass




The statistical model : single search channel

The measurement results 1n a set of numbers of events found 1n kinematic
regions where signal could be present

These typically correspond to a histogram of a variable such as the mass of
the reconstructed Higgs candidate

Camias Number of entries in bin i , n; ,
[roon modeled as a Poisson variable with
40} my = 300GeV mean value

) : En;] = us; + b;

: 1 s; : expected number of signal events
10 ]
: - 1 b; : expected number of background events
S0 220 240 260 260 300 320 340 360 380 400 o : signal strength parameter
M(4) [GeV]

reconstructed H — 4¢ mass after full event selection
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The statistical model : signal and background

For the i bin of an histogram of a discriminant variable x s; and b; can be written

bi = biot fb(x§§b)dx

bin 7




The statistical model : signal and background

For the i bin of an histogram of a discriminant variable x s; and b; can be written

b; = (biot fb(x§§b)dx

bin 7

Stot and by, o total expected numbers of events in the histogram




The statistical model : signal and background

For the i bin of an histogram of a discriminant variable x s; and b; can be written
= ( btot fo(z; 0p) dx
bin 7
Stot and by, o total expected numbers of events in the histogram

St - Signal normalization fixed equal to SM prediction




The statistical model : signal and background

For the i bin of an histogram of a discriminant variable x s; and b; can be written

= biot il 97,) dx

bin 7

Stot and by, o total expected numbers of events in the histogram

Fo(x:0,) and fy(z;0,) are the probability density functions (pdfs) of z for
signal and background




The statistical model : signal and background

For the i bin of an histogram of a discriminant variable x s; and b; can be written

b, = tht/binz’fb(xdx

Stot and by, o total expected numbers of events in the histogram
Stor - S1gnal normalization fixed equal to SM prediction

Fo(x:0,) and fy(z;0,) are the probability density functions (pdfs) of z for
signal and background

@3 and @: set of shape parameters
l all parameters 1n a statistical model that are not
of interest by itself but whose unknown values
are needed to make inferences about significant
variables under study (systematic errors)

nuisance parameters :




The statistical model : signal and background

For the i bin of an histogram of a discriminant variable x s; and b; can be written
bi = biot fo(x;0p) do
bin 7
Stot and by, o total expected numbers of events in the histogram

St - Signal normalization fixed equal to SM prediction

Fo(x:0,) and fy(z;0,) are the probability density functions (pdfs) of z for
signal and background

How the probability density functions can be determined ?
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The probability density functions

parametric forms of the pdfs are determined from Monte Carlo
simulations or data control samples

an example of signal pdf

[}
I | l Ll 1 1 I L1 Ll

mpyg = 600GeV

0200 300 400

1000
higgs mass

signal modeled by a relativistic
Breit-Wigner convoluted with a
Gaussian + Fermi function to
describe the tail

For low masses (mu < 300 GeV)
signal modeled by a Gaussian




The probability density functions

an example of background pdf

main background for H — 4/¢ channel: irriducible ZZ — 4/ process

p0 pl
f(MZZ> =% p6—M, M, , —p5 s p2— M, , AT

Gk a5 ) (ke = ire =

background modeled by a
combination of Fermi functions
suitable to describe the plateau in
the low mass region and the broad
peak corresponding to the second Z
on shell and the tail at high masses

For very low masses relevant also Zbb

background modeled by a Fermi function
(like 2™ term in the above formula)

500 600

Mayy 78(036\/')




Background measurement
expected background can be predicted using MC models for SM processed

systematic uncertainty in the SM prediction is in ’ -

many cases quite large QL < y >
it would severely limit the sensitivity of the search 2
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K
These can be modeled with a Poisson distribution with

n 10000 105 l 1;0 l I I | 135
E[m’&] e u’&(e) ] m, (GeV)
If measurement based on counting events in a given kinematic region — no use
of the distribution shape — histogram with a single bin

By —al——ah T =scaling constant

sideband region used to constraint the
background in the signal region

J’ 15000

subsidiary measurements m = (mq,....,mxy)
provide information on the bkg normalization
b:or and sometimes also on 1ts shape

12500

1T 1T 1 | 1T T 1 | L |




The statistical model : likelihood functzon

The single - function likelihood uses Poisson model for events in
signal and control histograms

M
'MSJ 2 b o~ (1sj+bj) H

k=

1 signal strength parameter :
1= 0 background only
1L = 1 signal rate expected from the SM

for a fixed Higgs mass
the onlv parameter of interest is u

Terms not dependent

Equivalently the log-likelihood is A parameters

— (g F ) —I—kalnuk—uk —I—/Z(

Log-likelihoods are conceptually no different to normal likelihood.
Working with natural log of likelihood to “makes life a little easier”




How to include systematic uncertainties?

Systematic errors can be included in the analysis through the
nuisance parameters

gxamp[e: signal efficiency Si— L@TB R

Suppose the efficiency estimated to have a value € £ o¢

To incorporate this uncertainty into the model
measured value € treated as random variable true value € as a nuisance parameter

Appropriate choice of the pdf  fe(€;€,0¢) ~ \/—1 e_(e_é)Q/QUE

2MOE€E




How to include systematic uncertainties?

Systematic errors can be included in the analysis through the
nuisance parameters

gxamp[e: signal efficiency Si— L@TB R

Suppose the efficiency estimated to have a value € £ o¢

To incorporate this uncertainty into the model
measured value € treated as random variable true value € as a nuisance parameter

Appropriate choice of the pdf Beta distribution to satisfy constraint 0 < e < 1




How to include systematic uncertainties?

Systematic errors can be included in the analysis through the
nuisance parameters

gxamp[e: signal efficiency Si— L@TB R

Suppose the efficiency estimated to have a value € £ o¢

To incorporate this uncertainty into the model
measured value € treated as random variable true value € as a nuisance parameter

Appropriate choice of the pdf fe(€ €, 00)

S . : J U
L{w, 0) = e = e_uk




T he methad of Maxzmum leellh()()d

The method of maximum likelihood (ML) is a technique for estimating the
values of the parameters given a finite sample of data.

6 T T T T T 6

— leg L=41 2 (ML fif) (8) — lcg =189
-~ leg L=41 0 (true parameters)
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The ML estimators (MLE) for the parameters are those which maximize
the (log-)likelihood function




lest statistic

The goal of a statistic test 1s to make a statement about how well the observed
data stand in agreement with given predicted probabilities 1.e. a hypothesis

The hypothesis under consideration 1s traditionally called the
null hypothesis Hy

In our case the null hypothesis Hy correspond to the
“background only” hypothesis p = 0 (no Higgs signal present)

The statement about the validity of Ho often involves a comparison with an
alternative hypothesis H;

In our case the alternative hypothesis Hi correspond to the
signal + background hypothesis p =1 (at the SM rate)

To investigate the measure of agreement between the observed data and a
given hypothesis one constructs a function of the measured variables
called a test statistic




= N -

__Pi;_aﬁle ikelihood Ratio

To test hypothesized value of u we construct the profile likelihood ratio

A
—

L(p,0)
L(f,0)

e 0 is the value of maximizing L for a given y — means fitted values
for a fixed u

Alw) =

A

e 0 and it are the full maximum likelihood estimators — values from best
fit with floating u

Equivalently it’s convenient to work with the quantity | ¢, = —2InA(u)

Data agree well with hypothesized p — q, small
Data disagree with hypothesized p — qu large




p-values

express the “goodness of fit”, 1.e. the level of compatibility between data
that give an observed value q,,0bs for qu and a hypothesized value of u

~N

0

= f(qu ’,LL) dqu f(qu|p) is the sampling distribution of g,
dobs

probability under the assumption

of p to observe data with equal or fqulw)

lesser compatibility with p relative |
to the data we got

med[q,|]
Quobs | f(gulr)

¢ p-value

This 1s NOT the probability that p
(hypothesis) 1s true !




p-values

e 1 refers to the strength parameter f(q“ ») med[qﬂv\,u’]
used to define ¢,,, entering in fla.ln)
the numerator of \(u) '

p-value

1/ is the value used to define the data
generated to obtain the distribution
(i.e. the true value)

f(gu|p) indicates the pdf of ¢, for data generated with the same p used to define
¢, —( 1 = p — pdf limiting form related to x* distribution

f(gu|p") indicates the pdf of g, for data generated with a different value of the
strength parameter — (' # p)— distribution shifted to higher values — decrease
of agreement between generated data with p' and the hypothesis tested by g,

med|q,,|p'] is the median value of g, under the assumption of a differen value of
the strength parameter p’ used to generate data




Significance

The significance corresponding to a given p-value can be defined as

1 2
P /Z /—27T€ X (Z) Z ( p)

1. €. the number of standard deviation Z at which a Gaussian random
variable of mean = 0 would give a one-sided tail area equal to p

A significance of
Z.= 5 (discovery)
correspond to
p=2.87x10"7




Discovery and exclusion limits

Discovery

Try to reject the background only
hypothesis p =0
If the data include signal we expect
to find a low value of A(0) — large qo
NOTE: qo depends on hypothesized
my through the denominator of A(p)
(we’re considering a fixed mp)

A given dataset will result in an
observed value ¢o,0ns of qo

gy = / £(4010) dao

do,obs
Small py is evidence against p=0 —
discovery of the signal

Exclusion
Try to reject an alternative
hypothesis of some p # 0
at a certain confidence level (CL),
NOTE: if reject u=1 at a certain CL
then the corresponding my is
regarded as excluded for a SM Higgs.

A p-value is computed V p and the set
of u for which p-values > fixed values
1- CL form a confidence interval for p
Tipically one takes a 95% CL
The upper end of the interval pp 1s the
upper limit (u < pwp @ 95% CL) —
largest value of p for which p-value is
at least 0.05




Discovery and exclusion sensitivity
Discovery Exclusion

To quantify our ability to discover an
hypothesized signal in advance of
seeing the data we calculate the
median significance under the
assumption p=1
(signal presence at SM rate)

The median limit under the assumption
that there is no Higgs is also interesting

Dy = T (1 — po(gomed)) Generate data under background only
(u=0) hypothesis
Test the hypothesis uy=1 — if p=1 has a
p-value < 0.05 exclude mu @ 95% CL

Generate data under s+b (u=1) hypothesis
Test the hypothesis u=0 — qomed —
p-value — Zmed

Estimation of median significance (limit) computationally difficult (large number of repeated
simulation based on full PL)
Use an approximation technique to estimate it quickly




Name inspired by the short story
The ‘ASimOV ’dataSelf—S Franchise by Isaac Asimov :

in it, elections are held by
selectiong a single voter to
represent the entire electorate

Remember : plan of a Higgs search combining multiple channel

one must carry out the global fit — combine the likelihood functions

L( W 5) — H L; ( L4, 9_;) channels are statistically indipendent

and use the full likelihood containing a single u to find the PL ratio

Possible to find median sensitivity corresponding to a global fit without
performing a global fit combining results from individual channels using a
“special dataset ” called E

Dataset in which all statistical fluctuations are suppressed (no stat. errors)
and the data value 7 and m replaced by their expectation values for a given
luminosity and a hypothesized pa
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The ‘Asimov’ datasets

The estimate of the median likelihood ratio for the it channel is

For the combination

N
method provides only an estimate of the median likelihood ratio :
uncertainties band on the expected median sensitivities as

function of my obtained only with large number of pseudo-experiment

on real data discovery and exclusion determination require the use
of the global fit




Sampling distribution

To compute p-value of a hypothesized u the sampling distribution f(qy|p) 1s needed

To claim a 5S¢ discovery p-value po should be 2.87x 10-7 — to estimate this using
Monte Carlo we need to generate 10® pseudo-experiment (for each point in the
parameter space and each luminosity)

Wilk’s theorem

In large sample limit f(g,|u) for an hypothesized value of p approaches the y?
distribution for one degree of freedom (n parameters of interest—x? for n d.o.f.)

f(Q,u|:u) % wfxf (q,u) e (1 — w)(S(qu) with w = % (half x? distribution)

ASSllmiIlg this form Zdiscovery ~ \/—QZ’I”L)\(/L = O) Zemclusion ~ \/—QZTL)\(,M ek 1)




Validation studies

The validation of the approximations has been investigated
for each channel by generating distribution of qy for u = 0,1 using toy-MC
and comparing the resulting histograms with the expected asymptotic form

signal and background pdf to generate toy-MC
(example in the next slide):
* us+b sample to study q, distribution
» background only sample to study qo distribution

Validation exercise show approximation 1s ok

for an integrated luminosity > 2 fb-! 10°

For lower luminosity MC needed to get f(q.|uw) 10"
(feasible for exclusion limit @ 95% CL)

distribution of ¢y under the p = 0 hypothesis




Example of pseudo-experiment for H —4{ channel
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ATLAS
pseudo-experiment corresponding to

30 fb—! of data for my = 130 GeV

Events/ (4.2)

'L:sofb"

[
!! 1|| III i hmu' m

l .:::!!.

llll] llllll]llllll lllllll llll]ll

100 150 200 250 300 350 400 450 500
M, [GeV]
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Events/ (4.2)

pseudo-experiment corresponding to
30 fb—! of data for my = 180 GeV

1 ral g L O 95
150 200 250 300 350




Some results for the H —4¢ channel

L : ATLAS
+ Profile likelihood ratio i . . 1 . f t t t . t
«_, Poisson probabity . |L=30 w' 1 111CIUSIOoN OI SySt€imnatlC uncertaintles
— no systematic included -

. — 1 decreases the signal significance
A e

'

7 1/

Signal significance

o

Vv

.

"

N

300 400 500 600
Higgs mass [GeV]

ToyMC median
[ JtoyMC =20
[ toyMC = 10

X Asimov result

% CL exclusion u at 5fb
—_ (6)]

validation of median significance estimation &

from Asimov data with toy-MC experiment °°

0 _I 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I
100 200 300 400 500 600
M, [GeV]




Results of combination

Plots in the following are not “official”’ ATLAS results




Combined discovery sensitivity
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1

expected p-value of p

L=21fb"
—Combined
722 =
1Y
- TT
expected WW0j — evuy

95% CL exclusion - WW2j— eviuy

-10 | S N | ! M B 1

100 20 140 160 180 200 220
my (GeV)

- } >

m, > 115 at 95% CL with 2 fb™

Luminosity [fo™)

Combined Exclusion CL




Conclusions

- statistical method for combination of (a subset of) SM Higgs search

channel

~treats systematics by means of profile likelthood method

- considered fixed my hypothesis: for floating mass scenario — Wilk's
theorem not valid anymore, significance degradation, results depend strongly

on fit range

~some approximation used for discovery/exclusion significance

- does not represent final word on methods — other developments
ongoing ( Bayesian, Confidence Levels, look-elsewhere effects,...)




Back Up Slides




Variance of estimators : MC method

Having estimated our parameter we now need to report its
‘statistical error’, 1.e., how widely distributed would estimates
be 1f we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from
sample variance of estimates
we find:

5’:,: = 0.151
Note distribution of estimates is roughly
Gaussian — (almost) always true for
ML in large sample limit.




Variance of estimators : graphical method
Expand In L (6) about its maximum:

L [OInL no 1 [02InL
|nL(9)=|nL(9)+! ()ne ]029(9_9)+%[ ()enQ

] (0—0)°+. ..
0=0

First termis In L__ ., second term is zero, for third term use
information inequality (assume equality):

M2
In L(9> ~ In Lmax — (0 Ae)
2025

~ 1
IN L(():*:O'(‘)‘) ~ In Lmax — 5

2 toget G5, change @ away from & until In L decreases by 1/2.




Bayesian vs. Frequentist method

Two schools of statistics use different interpretations of probability:

[. Relative frequency (frequentist statistics):

times outcome is A

P(A) = lim

"n—00 n
II. Subjective probability (Bayesian statistics):

P(A) = degree of belief that A is true

In particle physics frequency interpretation most used, but subjective
probability can be more natural for non-repeatable phenomena:
systematic uncertainties, probability that Higgs boson exists...




Frequentist statistic - general philosophy

In frequentist statistics, probabilities are associated only with
the data, 1.e., outcomes of repeatable observations.

Probability = limiting frequency
Probabilities such as

P (Higgs boson exists),
PO.117< o <0.121),

etc. are either O or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certam probabilities, about hypothetical
repeated observations.
The preferred theories (models, hypotheses, ...) are those for
which our observations would be considered ‘usual’.




Bayesian statistic - general philosophy
In Bayesian statistics, mterpretation of probability extended to
degree of beliet (subjective probability). Use this for hypotheses:

probability of the data assuming ' o
hypothesis H (the likelihood) . prior probability, ..,

X

e before seeing the data
P(Z|H)mw(H)
J P(Z|H)m(H)dH
posterior probability, 1.¢., ' normalization involves sum
after seeing the data over all possible hypotheses

P(H|Z) =

Bayesian methods can provide more natural treatment of non-
repeatable phenomena:
systematic uncertainties, probability that Higgs boson exists. ...

No golden rule for priors (“if-then” character of Bayes™ thm.)




Systematics and nuisance parameters
Example: fitting a straight line
Data:  (2;,vy;,0;),i=1,...,n.

Model: measured y; independent, Gaussian:  y; ~ N(u(x;), 0,1-2)

u(x; 0g,01) = 0p + 01,

assume x, and o, known.

Goal: estimate 6,

(don’t care about 6,).




Systematics and nuisance parameters

k 1 s . ,() .0 2
L(UO:()l) — 1 —— eXP —E(U’ ’“(1’2 0> 1))

s / aTr .

" (y; — (i 0g,01))°
x>(60,61) = —21In L(6g,61)+const = 3~ (yi — pl2i; 00,01))7

=1 g,

Standard deviations from

tangent lines to contour

X* = Xpnin + 1.

Correlation between

0y, 01 causes errors

to 1ncrease.




