Discovery of Supernova ⁶⁰Fe in the Earth's Microfossil Record A Cosmic Message in a Bottle

The ⁶⁰Fe Team

<u>TUM</u>

Karin Hain

Jose Gomez

Peter Ludwig

Valentina Chernenko

Nikolai Famulok

Leticia Fimiani

Gunther Korschinek

Thomas Faestermann

Central Institute for Meteorology & Geodynamics, Vienna

Ramon Egli

Outline

- Astrophysics Introduction
 - The <u>real</u> motivation (where is the r-process happening?)
 - A Cosmic Site of ⁶⁰Fe Production
- Accelerator Mass Spectrometry
- Terrestrial ⁶⁰Fe Reservoirs
 - Ferromanganese Crust (discovered)
 - ODP Sediment Core: Magnetofossils
 - 60Fe/Fe Results from M-fossils
- Conclusion & Future Ideas (time permitting)

Where in Nature are Elements Beyond Fe-Peak Made?

TLT

Cosmic Sites of ⁶⁰Fe Production

- Stars with masses > 10 solar masses
- Conclusion of core He-burning → He-burning shell → T ~ 4 x 10⁸
- Temp. drives the reaction sequence: $^{14}N(\alpha, \gamma)^{18}F(\beta^+\nu)^{18}O(\alpha, \gamma)^{22}Ne$
- Followed by: $^{22}\mathrm{Ne}(\alpha,n)^{25}\mathrm{Mg}$
- Free neutrons drive an s-process in the shell → ⁶⁰Fe production

• $^{12}\text{C}(^{12}\text{C},\alpha)^{20}\text{Ne}$ occurs in core

Free α's undergo reaction sequence above →
 ⁶⁰Fe production

Convection carries ⁶⁰Fe to lower temperatures, so that some survives against further n-capture

He Shell

Core Collapse Supernova

- Shock wave from core bounce slams into carbon and He shells
- Shells are shock heated
 - Heating drives the $^{22}{\rm Ne}(\alpha,n)^{25}{\rm Mg}$ reaction to faster rate
 - Shells are also expanding (explosively)
 - Neutron capture process as before occurs, but much faster
 - Neutron capture rates are comparable, or faster, than expansion rate of shell
- ⁶⁰Fe synthesized in these shells ejected into space (5000 km/s)

⁶⁰Fe Astrophysics Points

- Half-life = 2.62 Myr
- •Gamma-rays observed with INTEGRAL satellite of European Space Agency

G. Rugel et al., PRL 103 (2009)

Wang et al., Astron. & Astrophys. 469 (2007)

- ⁶⁰Fe data obtained from observing same region as ²⁶AI
- ²⁶Al also known to be produced in massive stars that become supernovae
- Finding ⁶⁰Fe in same places as ²⁶Al
 observational confirmation ⁶⁰Fe comes from massive stars and SN

60Ni

AMS Facility: Schematic

⁶⁰Ni Isobaric Contamination in AMS

The "Trick" for Background Suppression

Magnet selects charge:mass ratio

$$-B\rho = \frac{Mv}{q}$$

- For same ion energy from Tandem:
 - Kinetic E is same:

$$\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{M_2}{M_1}}$$

- If masses are same, cannot separate
- Magnet filled with few mbar N₂ gas
 - Then, q depends on atomic number.

$$\langle q \rangle \propto vZ^{0.4} \quad \Rightarrow B\rho \propto \frac{M}{Z^{0.4}}$$

The "Business" End of the AMS Facility

Segmented Anode Ionization Chamber

Final Particle Identification

TERRESTRIAL ⁶⁰FE RESERVOIRS

The FeMn Crust ⁶⁰Fe Results

Results from Ferro-Manganese Crust Findings

- Terrestrial 60 Fe fluence determined as $\phi_{60} = 2.8 \times 10^8$ atom/cm² (after new 60 Fe $t_{1/2}$ correction)
- Fluence: $\phi_{60} \propto 1/U_{Fe}$
- Uptake used was 0.6%, but:
 - Could be as large as unity (arguments for this not published)
- If unity, Knie et al. fluence reduced by ~165 times
 - Distance estimate wrong by ~15
- Second attempt made in Norwegian Sea sediment: no success
 - − Why? Please ask. ☺
- Motivated to find a different/new ⁶⁰Fe reservoir for cross checking and constraining uncertainties
- What is the new reservoir?

There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy. -- Hamlet

SUPERNOVA SIGNATURE OF BIOGENIC ORIGIN

The Hypothesis

- Supernova ⁶⁰Fe flux arrives in upper atmosphere
 - Molecular, fine grains/dust
 - Mixes into atmosphere enters Earth's Fe-cycle
 - SN ⁶⁰Fe (and stable Fe) oxidized
 - Forms nano-size oxide grains

- Nano-oxides reach ocean
- Rapidly dissolves and re-precipitates
- Forms poorly crystalline ferric hydroxides ("rust")
- Settles into sediment

Ocean

Magnetotactic Bacteria: The Essentials

- Form ~90 nm sized magnetic crystals of magnetite: Fe₃O₄
- Live in sediment just below the surface-water interface
- Process ferric hydroxide nano-grains into magnetosomes
- Bulk Fe phases from detrital sources not the primary Fe source → magnetosomes effectively sequester ⁶⁰Fe
- Bacteria co-move with sediment-water interface as it grows
- Magnetosomes become "magnetofossils"
- Any ⁶⁰Fe is "locked" inside

150 Myr BP

Excellence Cluster

Ocean Drill Core Samples

- Core 848, leg 138, equatorial Pacific
- Water depth: 3870 m
- Predominantly Calcium-carbonate (80%) and SiO₂ (20%)
- Column height obtained: 0 3.3 Myr BP
- Location: reduces detrital Fe inputs from continental run-off

 H_b

 $M(H_r, H_b)$

(M(Am²)

First Order Reversal Curves (FORC's)

Excellence Cluster

ď(mΤ)

FORC's of Our Sediment

Untreated

- 3% by mass Fe
- 60 ppm SD Iron
- Approx. 3% Fe in mag.
 minerals (biogenic and others)

Treated

60% from mag. minerals

- > 27% from bacteria
- < 6% from primary

P. Ludwig et al., Glob. Plan. Change 110 (2013)

Global and Planetary Change 110 (2013) 321-339

Contents lists available at ScienceDirect

Global and Planetary Change

Characterization of primary and secondary magnetite in marine sediment by combining chemical and magnetic unmixing techniques

P. Ludwig ^a, R. Egli ^{b,*}, S. Bishop ^a, V. Chernenko ^a, T. Frederichs ^c, G. Rugel ^d, S. Merchel ^d, M.J. Orgeira ^e

- ^a Physik Department, Technische Universität München, 85748 Garching, Germany
- ^b Geomagnetism and Gravimetry, Central Institute for Meteorology and Geodynamics, 1190 Vienna, Austria
- ^c Department of Geosciences, Universität Bremen, 28359 Bremen, Germany
- d Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
- ^e Department of Geological Sciences, FCEvN University of Buenos Aires, and CONICET, Argentina

ARTICLE INFO

Article history:
Received 17 December 2012
Received in revised form 26 August 2013
Accepted 29 August 2013
Available online 5 September 2013

ABSTRACT

We present a novel technique for quantitative unmixing of primary and secondary ferrimagnetic minerals in sediments. Hysteresis and high-resolution first-order reversal curve (FORC) measurements are performed on sediment samples before and after digestion in a citrate-bicarbonate-dithionite (CBD) solution optimized for maximum selective extraction of secondary fine-grained iron oxides. The difference between magnetic measurements of untreated and CBD-treated sample materials is used to calculate the original magnetic signature of CBD extractable minerals. A combination of selective chemical extraction and magnetic measurements cuited

> Extracting the Microfossil 60Fe and Measuring It

THE HOW-TO'S

ODP Drill Core 848 Results

- Width ~800 kyr
- World record blank level sensitivity
- World record
 ⁶⁰Fe/Fe
 concentration
 sensitivity

Data redacted: Under peer review.

Will appear in Proc. Natl. Acad. Sci.

ODP Drill Core 851 Results

Data redacted: Under peer review.

Will appear in Proc. Natl. Acad. Sci.

Summary

- Supernova signal residing in a biogenic reservoir
- First time-resolved SN signal transiting solar system
 - Does the time profile map the density profile of that material?
 - Width of ~800 kyr and shape requires future theoretical explanation
 - Is the shape determined by dynamics of supernova ejecta with interstellar medium?
 - Is the shape determined by terrerstrial "residence times?
 - Combination of these both?
- What's next? To search for ²⁴⁴Pu (r-process only isotope) to try answering:
 - Does the r-process occur in core-collapse supernova?
 - Geological field expedition to Atacama in Nov. 2016
- This work to appear infed Proc. Nat. Acad. Sci. (PNAS)

