ATLAS Trigger Overview and Performance

Annika Vauth

December 17th, 2008

Annika Vauth

ATLAS Trigger Overview and Performance

December 17th, 2008

1 / 24

Topics

2 Trigger Levels

- Trigger Levels
- Level 1
- Level 2
- Event Filter

3 Performance

- Performance Introduction
- Trigger Menus
- Prescale Factors
- Example: Tau Trigger Performance

Summary

- Selecting interesting events,
- Rejecting high-rate background events,
- Moving the interesting data to permanent storage.

- Selecting interesting events,
- Rejecting high-rate background events,
- Moving the interesting data to permanent storage.

- Selecting interesting events,
- Rejecting high-rate background events,
- Moving the interesting data to permanent storage.

- Selecting interesting events,
- Rejecting high-rate background events,
- Moving the interesting data to permanent storage.

- At high Luminosity $(10^{-34} \ cm^{-2} \ s^{-1})$:
 - 40 MHz bunch crossing Rate; approximately 25 collisions each, inelastic proton-proton-cross-section on the order of 10^9 Hz
- Must be reduced by a factor of 10^7 before writing to permanent storage (\approx 100 events / 200-400 MB of data per second)
- Example: decay of SM-Higgs with mass of 120 MeV/c^2 into $\gamma\gamma$: occurs only at 10^{-13} of the interaction rate

- At high Luminosity (10⁻³⁴ cm⁻² s⁻¹):
 40 MHz bunch crossing Rate; approximately 25 collisions each, inelastic proton-proton-cross-section on the order of 10⁹ Hz
- Must be reduced by a factor of 10^7 before writing to permanent storage (\approx 100 events / 200-400 MB of data per second)
- Example: decay of SM-Higgs with mass of 120 MeV/c^2 into $\gamma\gamma$: occurs only at 10^{-13} of the interaction rate

- At high Luminosity (10⁻³⁴ cm⁻² s⁻¹):
 40 MHz bunch crossing Rate; approximately 25 collisions each, inelastic proton-proton-cross-section on the order of 10⁹ Hz
- Must be reduced by a factor of 10^7 before writing to permanent storage (≈ 100 events / 200-400 MB of data per second)

• Example: decay of SM-Higgs with mass of 120 MeV/c^2 into $\gamma\gamma$: occurs only at 10^{-13} of the interaction rate

- At high Luminosity (10⁻³⁴ cm⁻² s⁻¹):
 40 MHz bunch crossing Rate; approximately 25 collisions each, inelastic proton-proton-cross-section on the order of 10⁹ Hz
- Must be reduced by a factor of 10^7 before writing to permanent storage (≈ 100 events / 200-400 MB of data per second)
- Example: decay of SM-Higgs with mass of 120 MeV/c^2 into $\gamma\gamma$: occurs only at 10^{-13} of the interaction rate

- At high Luminosity (10⁻³⁴ cm⁻² s⁻¹):
 40 MHz bunch crossing Rate; approximately 25 collisions each, inelastic proton-proton-cross-section on the order of 10⁹ Hz
- Must be reduced by a factor of 10^7 before writing to permanent storage (≈ 100 events / 200-400 MB of data per second)
- Example: decay of SM-Higgs with mass of 120 MeV/c^2 into $\gamma\gamma$: occurs only at 10^{-13} of the interaction rate

Trigger Levels

- *Level-1:* Hardware-based, acts on reduced-granularity data.
- Level-2: Full-granularity, analyse regions selected by Level 1.
- Event Filter: Decides which events from Level 2 will be recorded.

Trigger Levels

• Level-1: Hardware-based, acts on reduced-granularity data.

- Level-2: Full-granularity, analyse regions selected by Level 1.
- Event Filter: Decides which events from Level 2 will be recorded.

Trigger Levels

- Level-1: Hardware-based, acts on reduced-granularity data.
- Level-2: Full-granularity, analyse regions selected by Level 1.
- Event Filter: Decides which events from Level 2 will be recorded.

Trigger Levels

- Level-1: Hardware-based, acts on reduced-granularity data.
- Level-2: Full-granularity, analyse regions selected by Level 1.
- Event Filter: Decides which events from Level 2 will be recorded.

Trigger Levels

December 17th, 2008 6 / 24

3

- based on dedicated electronics and pipelined memories,
- operates at the LHC bunch-crossing frequency of 40MHz,
- uses only coarse-granularity information:
 - from the calorimeters and
 - a subset of the muon detectors.

- based on dedicated electronics and pipelined memories,
- operates at the LHC bunch-crossing frequency of 40MHz,
- uses only coarse-granularity information:
 - from the calorimeters and
 - a subset of the muon detectors.

- based on dedicated electronics and pipelined memories,
- operates at the LHC bunch-crossing frequency of 40MHz,
- uses only coarse-granularity information:
 - from the calorimeters and
 - a subset of the muon detectors.

- based on dedicated electronics and pipelined memories,
- operates at the LHC bunch-crossing frequency of 40MHz,
- uses only coarse-granularity information:
 - from the calorimeters and
 - a subset of the muon detectors.

- based on dedicated electronics and pipelined memories,
- operates at the LHC bunch-crossing frequency of 40MHz,
- uses only coarse-granularity information:
 - from the calorimeters and
 - a subset of the muon detectors.

Object	Number of thresholds	Isolation	η range	description
MU	6	no	2.4	muon
EM	8	yes	2.5	e.m. cluster
Т	8	yes	2.5	$\tau \rightarrow$ hadrons or single hadron
J	8	no	3.2	jet
XE	8	-	4.9	missing-E _T
SE	4	-	4.9	total scalar E _T
			∢ [コ > ・ 4 目 > ・ 4 目 > ・ 目 ・ つ 9
Annika Vauth		ATLAS Trigger Overview and Performance		December 17th. 2008 7 / 3

Fime Scale

- Latency is about 2 μ s ,
- mainly due to cable propagation and trigger processing time.
- During processing, data from more than one bunch-crossing are held in pipeline memories
- Maximum accept rate is limited to 75 100 kHz.

Time Scale

- Latency is about 2 μs ,
- mainly due to cable propagation and trigger processing time.
- During processing, data from more than one bunch-crossing are held in pipeline memories
- Maximum accept rate is limited to 75 100 kHz.

Time Scale

- Latency is about 2 μs ,
- mainly due to cable propagation and trigger processing time.
- During processing, data from more than one bunch-crossing are held in pipeline memories
- Maximum accept rate is limited to 75 100 kHz.

Time Scale

- Latency is about 2 μs ,
- mainly due to cable propagation and trigger processing time.
- During processing, data from more than one bunch-crossing are held in pipeline memories
- Maximum accept rate is limited to 75 100 kHz.

- based on Resistive Plate Chambers and Thin Gap Chambers
- Muon Trigger looks for coincidence of hits within different layers within a geometric road (width depends on p_T-treshold)
- Forwards information to the Central Trigger Processor (CTP)

- based on Resistive Plate Chambers and Thin Gap Chambers
- Muon Trigger looks for coincidence of hits within different layers within a geometric road (width depends on p_T-treshold)
- Forwards information to the Central Trigger Processor (CTP)

- based on Resistive Plate Chambers and Thin Gap Chambers
- Muon Trigger looks for coincidence of hits within different layers within a geometric road (width depends on p_T-treshold)
- Forwards information to the Central Trigger Processor (CTP)

- based on Resistive Plate Chambers and Thin Gap Chambers
- Muon Trigger looks for coincidence of hits within different layers within a geometric road (width depends on p_T-treshold)
- Forwards information to the Central Trigger Processor (CTP)

- Uses info from EM and hadronic calorimeters with reduced granularity.
- data trigger towers (in which all samplings are summed) in each of the EM and hadronic calorimeter.
- Subsequent processing is divided into three sub-triggers, which process information independently and in parallel on: high- p_T EM clusters, hadron $/\tau$ clusters, and high E_T jets.
- Regions containing jets and EM clusters are flagged for LVL2 analysis.
- Calorimeter processor informs the CTP of the multiplicity of EM clusters, hadron/ τ clusters, and jet candidates.

- Uses info from EM and hadronic calorimeters with reduced granularity.
- data trigger towers (in which all samplings are summed) in each of the EM and hadronic calorimeter.
- Subsequent processing is divided into three sub-triggers, which process information independently and in parallel on: high- p_T EM clusters, hadron $/\tau$ clusters, and high E_T jets.
- Regions containing jets and EM clusters are flagged for LVL2 analysis.
- Calorimeter processor informs the CTP of the multiplicity of EM clusters, hadron/ τ clusters, and jet candidates.

- Uses info from EM and hadronic calorimeters with reduced granularity.
- data trigger towers (in which all samplings are summed) in each of the EM and hadronic calorimeter.
- Subsequent processing is divided into three sub-triggers, which process information independently and in parallel on: high- p_T EM clusters, hadron $/\tau$ clusters, and high E_T jets.
- Regions containing jets and EM clusters are flagged for LVL2 analysis.
- Calorimeter processor informs the CTP of the multiplicity of EM clusters, hadron/ τ clusters, and jet candidates.

- Uses info from EM and hadronic calorimeters with reduced granularity.
- data trigger towers (in which all samplings are summed) in each of the EM and hadronic calorimeter.
- Subsequent processing is divided into three sub-triggers, which process information independently and in parallel on: high- p_T EM clusters, hadron $/\tau$ clusters, and high E_T jets.
- Regions containing jets and EM clusters are flagged for LVL2 analysis.
- Calorimeter processor informs the CTP of the multiplicity of EM clusters, hadron/ τ clusters, and jet candidates.

- Uses info from EM and hadronic calorimeters with reduced granularity.
- data trigger towers (in which all samplings are summed) in each of the EM and hadronic calorimeter.
- Subsequent processing is divided into three sub-triggers, which process information independently and in parallel on: high- p_T EM clusters, hadron $/\tau$ clusters, and high E_T jets.
- Regions containing jets and EM clusters are flagged for LVL2 analysis.
- Calorimeter processor informs the CTP of the multiplicity of EM clusters, hadron/ τ clusters, and jet candidates.

The Central Trigger Processor

- Correlates results from calorimeter trigger and muon trigger ,
- makes the overall LVL1 trigger decision.

The Central Trigger Processor

- Correlates results from calorimeter trigger and muon trigger ,
- makes the overall LVL1 trigger decision.

- Software, runs on large processor farms
- uses full-precision information from the inner detector and full-granularity data from calorimeters and muon detectors:
- only inspects the geometrical regions of the detector that the LVL1 trigger has identifed as interesting ("Regions of Interest")
 ⇒ only 1-2% of stored data is transferred to LVL2 processors

- Software, runs on large processor farms
- uses full-precision information from the inner detector and full-granularity data from calorimeters and muon detectors:
- only inspects the geometrical regions of the detector that the LVL1 trigger has identifed as interesting ("Regions of Interest")
 ⇒ only 1-2% of stored data is transferred to LVL2 processors

- Software, runs on large processor farms
- uses full-precision information from the inner detector and full-granularity data from calorimeters and muon detectors:
- only inspects the geometrical regions of the detector that the LVL1 trigger has identifed as interesting ("Regions of Interest")
 ⇒ only 1-2% of stored data is transferred to LVL2 processors

- Software, runs on large processor farms
- uses full-precision information from the inner detector and full-granularity data from calorimeters and muon detectors:
- only inspects the geometrical regions of the detector that the LVL1 trigger has identifed as interesting ("Regions of Interest")
 ⇒ only 1-2% of stored data is transferred to LVL2 processors

Supervisor / Rol Builder

- The Rol builder receives data from LVL1, builds a record containing list of Rols, their type and position
- The Supervisor assigns LVL2 processors and forwards the Rol reports, also transmitts LVL2 decisions to the Readout Buffer so that data of rejected events is cleared.

< 🗇 🕨

13 / 24

Supervisor / Rol Builder

- The Rol builder receives data from LVL1, builds a record containing list of Rols, their type and position
- The Supervisor assigns LVL2 processors and forwards the Rol reports, also transmitts LVL2 decisions to the Readout Buffer so that data of rejected events is cleared.

Processing Farms

- Feature Extraction: data from one Rol in a single subdetector is processed to give compact description of it.
- *Object building:* combines Rol features from all relevant subdetectors.
- Trigger Type Selection: combines all objects from one event, compares the result to "trigger menu" (menu of physics selections)

A D > A A P >

14 / 24

Processing Farms

- Feature Extraction: data from one Rol in a single subdetector is processed to give compact description of it.
- *Object building:* combines Rol features from all relevant subdetectors.
- Trigger Type Selection: combines all objects from one event, compares the result to "trigger menu" (menu of physics selections)

Processing Farms

- Feature Extraction: data from one Rol in a single subdetector is processed to give compact description of it.
- *Object building:* combines Rol features from all relevant subdetectors.
- Trigger Type Selection: combines all objects from one event, compares the result to "trigger menu" (menu of physics selections)

- Software, runs on large processor farms
- After an event is accepted by the LVL2, the data for the event is moved from the Readout Buffers to the EF processors
- \bullet latency is on the order of 1 s \Rightarrow run more sophisticated algorithms
- Vertex reconstruction and track fitting are performed at this level
- may also perform some data preparation steps before storage, e. g. zero suppression
- performs the final event selection and data reduction before permanent storage.

- Software, runs on large processor farms
- After an event is accepted by the LVL2, the data for the event is moved from the Readout Buffers to the EF processors
- $\bullet\,$ latency is on the order of 1 s $\Rightarrow\,$ run more sophisticated algorithms
- Vertex reconstruction and track fitting are performed at this level
- may also perform some data preparation steps before storage, e. g. zero suppression
- performs the final event selection and data reduction before permanent storage.

15 / 24

- Software, runs on large processor farms
- After an event is accepted by the LVL2, the data for the event is moved from the Readout Buffers to the EF processors
- ullet latency is on the order of 1 s \Rightarrow run more sophisticated algorithms
- Vertex reconstruction and track fitting are performed at this level
- may also perform some data preparation steps before storage, e. g. zero suppression
- performs the final event selection and data reduction before permanent storage.

- Software, runs on large processor farms
- After an event is accepted by the LVL2, the data for the event is moved from the Readout Buffers to the EF processors
- latency is on the order of 1 s \Rightarrow run more sophisticated algorithms
- Vertex reconstruction and track fitting are performed at this level
- may also perform some data preparation steps before storage, e. g. zero suppression
- performs the final event selection and data reduction before permanent storage.

- Software, runs on large processor farms
- After an event is accepted by the LVL2, the data for the event is moved from the Readout Buffers to the EF processors
- latency is on the order of 1 s \Rightarrow run more sophisticated algorithms
- Vertex reconstruction and track fitting are performed at this level
- may also perform some data preparation steps before storage, e. g zero suppression
- performs the final event selection and data reduction before permanent storage.

- Software, runs on large processor farms
- After an event is accepted by the LVL2, the data for the event is moved from the Readout Buffers to the EF processors
- latency is on the order of 1 s \Rightarrow run more sophisticated algorithms
- Vertex reconstruction and track fitting are performed at this level
- may also perform some data preparation steps before storage, e. g. zero suppression
- performs the final event selection and data reduction before permanent storage.

15 / 24

- Software, runs on large processor farms
- After an event is accepted by the LVL2, the data for the event is moved from the Readout Buffers to the EF processors
- latency is on the order of 1 s \Rightarrow run more sophisticated algorithms
- Vertex reconstruction and track fitting are performed at this level
- may also perform some data preparation steps before storage, e. g. zero suppression
- performs the final event selection and data reduction before permanent storage.

- Bunch Crossing Identification:
 - LVL1 trigger must identify bunch crossing that gave rise to the trigger.
- Transverse momentum range: for example B-physics studies require the ability to trigger on low- p_T muons with thresholds down to $p_T \approx 6 GeV$
- Efficiency:

Ratio of the number of triggered muons to the number generated should be high.

• Rates:

- Bunch Crossing Identification: LVL1 trigger must identify bunch crossing that gave rise to the
- Transverse momentum range: for example B-physics studies require the ability to trigger on low- p_T muons with thresholds down to $p_T \approx 6 GeV$
- Efficiency:

Ratio of the number of triggered muons to the number generated should be high.

• Rates:

- Bunch Crossing Identification: LVL1 trigger must identify bunch crossing that gave rise to the trigger.
- Transverse momentum range: for example B-physics studies require the ability to trigger on low- p_T muons with thresholds down to $p_T \approx 6 GeV$
- Efficiency:

Ratio of the number of triggered muons to the number generated should be high.

• Rates:

• Bunch Crossing Identification:

LVL1 trigger must identify bunch crossing that gave rise to the trigger.

- Transverse momentum range: for example B-physics studies require the ability to trigger on low- p_T muons with thresholds down to $p_T \approx 6 GeV$
- Efficiency:

Ratio of the number of triggered muons to the number generated should be high.

• Rates:

• Bunch Crossing Identification:

LVL1 trigger must identify bunch crossing that gave rise to the trigger.

- Transverse momentum range: for example B-physics studies require the ability to trigger on low- p_T muons with thresholds down to $p_T \approx 6 GeV$
- Efficiency:

Ratio of the number of triggered muons to the number generated should be high.

• Rates:

• Bunch Crossing Identification:

LVL1 trigger must identify bunch crossing that gave rise to the trigger.

- Transverse momentum range: for example B-physics studies require the ability to trigger on low- p_T muons with thresholds down to $p_T \approx 6 GeV$
- Efficiency:

Ratio of the number of triggered muons to the number generated should be high.

Rates:

- Performance studies based on Monte Carlo simulations.
- Goal is to obtains at high efficiencies at each trigger level with sufficient background rejection.
- Evaluate the performance of each level seperately to chose the best trigger strategy.
- Evalutate the rates that each trigger level yields.

- Performance studies based on Monte Carlo simulations.
- Goal is to obtains at high efficiencies at each trigger level with sufficient background rejection.
- Evaluate the performance of each level seperately to chose the best trigger strategy.
- Evalutate the rates that each trigger level yields.

- Performance studies based on Monte Carlo simulations.
- Goal is to obtains at high efficiencies at each trigger level with sufficient background rejection.
- Evaluate the performance of each level seperately to chose the best trigger strategy.
- Evalutate the rates that each trigger level yields.

- Performance studies based on Monte Carlo simulations.
- Goal is to obtains at high efficiencies at each trigger level with sufficient background rejection.
- Evaluate the performance of each level seperately to chose the best trigger strategy.
- Evalutate the rates that each trigger level yields.

- Performance studies based on Monte Carlo simulations.
- Goal is to obtains at high efficiencies at each trigger level with sufficient background rejection.
- Evaluate the performance of each level seperately to chose the best trigger strategy.
- Evalutate the rates that each trigger level yields.

17 / 24

- Performance studies based on Monte Carlo simulations.
- Goal is to obtains at high efficiencies at each trigger level with sufficient background rejection.
- Evaluate the performance of each level seperately to chose the best trigger strategy.
- Evalutate the rates that each trigger level yields.

Tables of signatures adressing specific physic goals (tresholds and selection criteria at each level).

Notation

- e (electron), g (photon), MU (muons), tau (tau leptons), EM (electromagnetic), J (jets), FJ (forward jets), XE (missing E_T), TE (total scalar sum E_T)
- an "'i"' stands for isolation,
- multiple required objects are connected by an underscore.

Example: 2e15 requires two electrons with E_T over 15 GeV; tau25i_XE30 requires an isolated tau lepton with E_T over 25 GeV AND a missing E_T above 30 GeV.

Tables of signatures adressing specific physic goals (tresholds and selection criteria at each level).

Notation

- e (electron), g (photon), MU (muons), tau (tau leptons), EM (electromagnetic), J (jets), FJ (forward jets), XE (missing E_T), TE (total scalar sum E_T)
- an "'i"' stands for isolation,
- multiple required objects are connected by an underscore.

Example: 2e15 requires two electrons with E_T over 15 GeV; tau25i_XE30 requires an isolated tau lepton with E_T over 25 GeV AND a missing E_T above 30 GeV.

Tables of signatures adressing specific physic goals (tresholds and selection criteria at each level).

Notation

- e (electron), g (photon), MU (muons), tau (tau leptons), EM (electromagnetic), J (jets), FJ (forward jets), XE (missing E_T), TE (total scalar sum E_T)
- an "'i"' stands for isolation,
- multiple required objects are connected by an underscore.

Example: 2e15 requires two electrons with E_T over 15 GeV; tau25i_XE30 requires an isolated tau lepton with E_T over 25 GeV AND a missing E_T above 30 GeV.

3

イロト イヨト イヨト イヨト

Tables of signatures adressing specific physic goals (tresholds and selection criteria at each level).

Notation

- e (electron), g (photon), MU (muons), tau (tau leptons), EM (electromagnetic), J (jets), FJ (forward jets), XE (missing E_T), TE (total scalar sum E_T)
- an "'i"' stands for isolation,
- multiple required objects are connected by an underscore.

Example: 2e15 requires two electrons with E_T over 15 GeV; tau25i_XE30 requires an isolated tau lepton with E_T over 25 GeV AND a missing E_T above 30 GeV.

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Prescale factor

- Prescale Factors for early running determined from simulations
- Will be changed for higher luminosity
- Can be adjusted to keep output bandwidth saturated during run.

Prescale factor

• Prescale Factors for early running determined from simulations

- Will be changed for higher luminosity
- Can be adjusted to keep output bandwidth saturated during run.

Trigger Iter	n EN	13	EM	7	EM1	3	EM13I	EM18	E	M18I	EM	23I	EM100
Prescale	6)	1		1		1	1		1	1	l	1
Rate (Hz)	67	4	490	0) 950		480	369		143	53		1.5
Trigger Iter	n 2EI	M 3	2EN	17	2EM	13	2EM13I	2EM18	2E	EM18I	2EM	123I	3EM7
Prescale	1		1		1		1	1		1	1	l	1
Rate (Hz)	65	00	534	1	108		8	47		2		.6	53
Signature	tau6	ta	u9I	ta	ullI		tau16I	tau25		tau25I		tau40	
Prescale	750	3	300	1	1500		10000	20		10			1
Rate (Hz)	19		16		2		< 0.1	16.1		25			83
Signature	2tau6	2t	au9I	2t	au16I	ta	u6_tau16I	tau91_EM	31	tau91_N	MU6 tau9		LXE30
Prescale	100		1		1		10	1		1			1
Rate (Hz)	19	4	413		65		46	100		25		1	160
-		·											
T		15			VEAS		Z = 20	740 I VES	<u> </u>	VE70	VEO	0	

Trigger Item	XE15	XE20	XE25	XE30	XE40	XE50	XE70	XE80
Prescale	30000	7000	1500	200	20	2	1	1
Rate (Hz)	2.5	3	4	7.5	7.5	14	2	1

Annika Vauth

ATLAS Trigger Overview and Performance

19 / 24

Prescale factor

- Prescale Factors for early running determined from simulations
- Will be changed for higher luminosity
- Can be adjusted to keep output bandwidth saturated during run.

Trigger Iter	n EM	13	EM	7	EM1	3	EM13I	EM18	E	M18I	EM	23I	EM100
Prescale	6)	1		1		1	1		1	1	l	1
Rate (Hz)	67	4	490	0	950		480	369		143	5	3	1.5
Trigger Iter	n 2EM	M 3	2EN	17	7 2EM1		2EM13I	2EM18	2H	EM18I	2EM	123I	3EM7
Prescale	1		1		1		1	1		1	1	l	1
Rate (Hz)	65	00	534	1	108		8	47		2	0.	.6	53
Signature	tau6	ta	u9I	ta	ullI		tau16I	tau25		tau2	5I ta		.u40
Prescale	750	3	300	1	1500		10000	20		10			1
Rate (Hz)	19		16		2		< 0.1	16.1		25			83
Signature	2tau6	2t	au9I	2t	au16I	ta	u6_tau16I	tau91_EM	13I	tau91_N	AU6	tau9	LXE30
Prescale	100		1		1		10	1		1			1
Rate (Hz)	19	4	413		65		46	100		25		1	160
		·											
Trigger Iter	Trigger Item VE15 VE20 VE25 VE20 VE40 VE50 VE70 VE90												

Trigger Item	XE15	XE20	XE25	XE30	XE40	XE50	XE70	XE80	
Prescale	30000	7000	1500	200	20	2	1	1	1
Rate (Hz)	2.5	3	4	7.5	7.5	14	2	1	1

Annika Vauth

ATLAS Trigger Overview and Performance

December 17th, 2008

19 / 24

Prescale factor

- Prescale Factors for early running determined from simulations
- Will be changed for higher luminosity
- Can be adjusted to keep output bandwidth saturated during run.

Trigger Iter	n EM	13	EM	7	EM1	3	EM13I	EM18	E	EM18I	EM	23I	EM100
Prescale	60)	1		1		1	1		1		1	1
Rate (Hz)	67	4	490	0	950		480 369			143	5	3	1.5
Trigger Iter	n 2EM	A 3	2EN	17	2EM	13	2EM13I	2EM18	2	EM18I	2EN	123I	3EM7
Prescale	1		1		1		1	1		1		1	1
Rate (Hz)	650)0	534	1	108		8	47		2	0.6		53
Signature	tau6	ta	u9I	ta	u11I		tau16I	tau25		tau2	5I	ta	.u40
Prescale	750	3	300	1	500		10000	20		10)		1
Rate (Hz)	19		16		2		< 0.1	16.1		25			83
Signature	2tau6	2t	au9I	2t	au16I	ta	u6_tau16I	tau9I_EM13I		tau9I_MU6		tau9I_XE30	
Prescale	100		1		1		10	1		1			1
Rate (Hz)	19	4	413		65		46	100		25		160	
Trigger Iter	n VE	15	VET	0	VE25	1	VE20 VI	740 VE	50	VE70	VEQ	0	

Trigger Item	XE15	XE20	XE25	XE30	XE40	XE50	XE70	XE80
Prescale	30000	7000	1500	200	20	2	1	1
Rate (Hz)	2.5	3	4	7.5	7.5	14	2	1
- Track-based: tracks as initial reconstruction seed
- Calorimeter-based: uses calorimeter cluster as initial seed
- efficiency loss by selection both seeds but much lower risk of selection background events

20 / 24

• Track-based: tracks as initial reconstruction seed

- Calorimeter-based: uses calorimeter cluster as initial seed
- efficiency loss by selection both seeds but much lower risk of selection background events

- Track-based: tracks as initial reconstruction seed
- Calorimeter-based: uses calorimeter cluster as initial seed
- efficiency loss by selection both seeds but much lower risk of selection background events

- Track-based: tracks as initial reconstruction seed
- Calorimeter-based: uses calorimeter cluster as initial seed
- efficiency loss by selection both seeds but much lower risk of selection background events

20 / 24

Timing Studies

- tests of individual triggers to evaluate the impact of increasing threshold levels on the execution time.
- timing comparison between the calorimeter-approach and tracking-approach.

Timing Studies

- tests of individual triggers to evaluate the impact of increasing threshold levels on the execution time.
- timing comparison between the calorimeter-approach and tracking-approach.

Timing Studies

- tests of individual triggers to evaluate the impact of increasing threshold levels on the execution time.
- timing comparison between the calorimeter-approach and tracking-approach.

Timing Studies

- tests of individual triggers to evaluate the impact of increasing threshold levels on the execution time.
- timing comparison between the calorimeter-approach and tracking-approach.

	Threshold Signature								
Algorithm	tau10i	tau15i	tau20i	tau25i	tau35i				
L2 Calo	8.1	8.0	8.0	8.1	8.1				
L2 Tracking	15.4	15.5	15.0	14.9	14.7				
L2 Combined	1.9	1.9	2.0	2.0	2.2				
L2 TotalTime	41.6	35.9	19.7	14.1	7.9				
EF Calo	12.3	12.5	13.4	13.0	14.0				
EF Tracking	289.7	297.7	269.5	268.4	247.8				
EF Combined	77.0	76.9	80.7	77.8	78.9				
EF TotalTime	149.1	133.6	67.5	51.2	24.6				

Tau Trigger: Efficiency

Tau Trigger: for various physics signals

Trigger Item	$W_{\tau \to hX}$	$Z_{\tau\tau}$	tī	$A_{\tau\tau}(800)$	SU3	$H_{\tau\tau \to \ell hX}$	$H_{\tau\tau \to hhX}$
tau10	82.6 ± 0.3	91.9 ± 0.2	93.6 ± 0.4	97.1 ± 0.1	94.3 ± 0.3	93.8 ± 0.2	96.9 ± 0.1
tau10i	78.7 ± 0.4	89.8 ± 0.2	91.1 ± 0.4	96.4 ± 0.2	92.0 ± 0.4	92.1 ± 0.3	95.8 ± 0.1
tau15	78.2 ± 0.4	88.7 ± 0.3	91.9 ± 0.4	96.5 ± 0.1	92.4 ± 0.4	91.6 ± 0.3	95.4 ± 0.1
tau15i	74.1 ± 0.4	86.0 ± 0.3	89.1 ± 0.5	96.1 ± 0.2	90.4 ± 0.4	90.0 ± 0.3	94.1 ± 0.1
tau20i	68.5 ± 0.5	79.9 ± 0.3	83.2 ± 0.6	89.8 ± 0.2	82.5 ± 0.5	85.0 ± 0.4	89.8 ± 0.2
tau25i	66.5 ± 0.6	76.0 ± 0.4	80.1 ± 0.7	89.0 ± 0.3	79.7 ± 0.6	82.0 ± 0.4	87.1 ± 0.2
tau35i	65.8 ± 0.9	70.0 ± 0.6	77.4 ± 0.9	87.5 ± 0.3	76.9 ± 0.7	78.2 ± 0.5	82.0 ± 0.2
tau45	82.7 ± 1.3	78.7 ± 0.8	88.0 ± 0.9	94.9 ± 0.2	89.6 ± 0.6	86.2 ± 0.5	88.5 ± 0.2
tau45i	72.1 ± 1.5	68.5 ± 0.9	76.0 ± 1.2	86.1 ± 0.3	75.1 ± 0.9	75.8 ± 0.7	78.5 ± 0.3
tau60	77.5 ± 2.6	74.4 ± 1.5	74.7 ± 1.7	91.4 ± 0.2	78.2 ± 1.1	76.1 ± 0.9	77.5 ± 0.4
tau100	83.9 ± 6.6	78.2 ± 4.1	80.2 ± 3.5	90.0 ± 0.3	81.7 ± 1.9	79.1 ± 1.6	80.7 ± 0.7
2tau25i	0.0 ± 0.0	47.2 ± 1.5	60.0 ± 11.0	62.6 ± 1.2	62.6 ± 2.7	61.5 ± 6.7	59.3 ± 0.6
2tau35i	0.0 ± 0.0	43.1 ± 3.1	57.1 ± 18.7	60.6 ± 1.3	62.0 ± 3.8	50.0 ± 9.1	55.6 ± 0.9
tau15i_xe20	56.3 ± 0.6	48.4 ± 0.8	80.1 ± 0.7	92.7 ± 0.2	89.5 ± 0.4	80.8 ± 0.5	80.2 ± 0.3
tau20i_xe30	45.4 ± 0.9	38.6 ± 1.2	70.1 ± 0.9	84.5 ± 0.3	81.4 ± 0.6	73.9 ± 0.6	73.2 ± 0.4
tau25i_xe30	44.2 ± 1.0	38.0 ± 1.3	67.5 ± 1.0	83.8 ± 0.3	78.7 ± 0.6	71.4 ± 0.7	71.1 ± 0.4
tau35i_xe20	55.1 ± 1.2	42.0 ± 1.2	68.7 ± 1.1	84.5 ± 0.3	76.3 ± 0.7	70.8 ± 0.7	69.5 ± 0.4
tau35i_xe30	47.7 ± 1.5	38.5 ± 1.7	63.3 ± 1.2	82.3 ± 0.3	76.2 ± 0.7	69.2 ± 0.8	66.9 ± 0.4
tau35i_xe40	42.1 ± 2.5	39.2 ± 2.4	58.0 ± 1.4	80.8 ± 0.4	75.6 ± 0.8	68.3 ± 1.0	65.3 ± 0.5
tau45_xe40	54.7 ± 3.6	48.3 ± 3.0	67.4 ± 1.6	87.6 ± 0.3	88.2 ± 0.7	76.5 ± 1.0	71.0 ± 0.6
tau45i_xe20	60.1 ± 2.1	43.8 ± 1.7	67.3 ± 1.4	83.2 ± 0.3	74.7 ± 0.9	69.0 ± 0.9	66.7 ± 0.4
tau20i_e10	0.0 ± 0.0	68.1 ± 1.2	73.7 ± 2.9	79.6 ± 0.8	77.1 ± 1.7	73.2 ± 0.8	0.0 ± 0.0
tau20i_mu6	0.0 ± 0.0	72.0 ± 0.9	81.4 ± 2.4	80.3 ± 0.7	83.3 ± 1.3	79.4 ± 0.7	0.0 ± 0.0
tau20i_j70	70.8 ± 1.4	78.8 ± 0.7	81.6 ± 0.7	89.4 ± 0.2	82.7 ± 0.6	65.6 ± 0.7	72.6 ± 0.3
tau20i_3j23	61.1 ± 2.1	80.2 ± 0.8	82.0 ± 0.7	89.9 ± 0.2	83.2 ± 0.6	83.7 ± 0.7	80.7 ± 0.3
tau20i_4j23	58.2 ± 4.1	82.7 ± 1.6	80.5 ± 0.9	90.3 ± 0.3	84.5 ± 0.6	86.9 ± 1.7	83.9 ± 0.7

Annika Vauth

ATLAS Trigger Overview and Performance

23 / 24

 Event rate must be reduced by a factor of 10⁷ before writing to permanent storage.
⇒ Triggering is important!

 \Rightarrow Triggering is important!

• Trigger structured into three levels (Level 1, Level 2, Event filter)

• Performance studies undertaken for tau, muon, electrons and photons, jets, ...

• Latest Monte Carlo simulations show good trigger performance.

- Event rate must be reduced by a factor of 10⁷ before writing to permanent storage.
 - \Rightarrow Triggering is important!
- Trigger structured into three levels (Level 1, Level 2, Event filter)

• Performance studies undertaken for tau, muon, electrons and photons, jets, ...

• Latest Monte Carlo simulations show good trigger performance.

- Event rate must be reduced by a factor of 10⁷ before writing to permanent storage.
 - \Rightarrow Triggering is important!
- Trigger structured into three levels (Level 1, Level 2, Event filter)
- Performance studies undertaken for tau, muon, electrons and photons, jets, ...
- Latest Monte Carlo simulations show good trigger performance.