Towards a Quantum Theory of Solitons

Tehseen Rug

Max-Planck-Institut für Physik, Ludwig-Maximilians Universität

November, 13th 2015

Contents

- 1 Classicality vs. Quantumness
- 2 Solitons in 1+1 Dimensions: Semi-classical Treatment
- 3 Corpuscular Theory of Solitons
- Summary and Outlook

An Example

Classical electric field:

$$\partial_i E_i = \rho \tag{1}$$

- ullet given charge distribution $ho \Rightarrow$ classical electric field ho
- QED ⇒ particles are fundamental, classical field as emergent phenomenon.
- classical field E_i is coherent state of N (longitudinal) photons
- semi-classical limit: $N \to \infty$

Semiclassical Approach

Quantum effects encoded in fluctuations around background

- expand $E_i \rightarrow E_i + \delta E_i$
- compute loops of " δE_i -particles" in classical background E_i
- classical limit: $\hbar \rightarrow 0$

Semiclassical Approach

Quantum effects encoded in fluctuations around background

- expand $E_i \rightarrow E_i + \delta E_i$
- compute loops of " δE_i -particles" in classical background E_i
- classical limit: $\hbar \rightarrow 0$

Levels of Quantumness

Fully Quantum : N, \hbar finite

Semi – classical : $N \rightarrow \infty$, \hbar finite

Classical Limit : $N \to \infty, \hbar \to 0$ (2)

Solitons: Definition and Examples

Definition: Soliton is a static, localized, finite energy solution Examples:

non-topological soliton:

$$\mathscr{L} = (\partial_{\mu}\phi)^{2} - m^{2}\phi^{2} + g^{2}\phi^{4} \rightarrow \phi_{c}(x) = \frac{m}{g}\mathrm{sech}(mx)$$
 characteristic size: $L = m^{-1}$ Energy: $E_{non-top} = \int dx (\partial_{x}\phi)^{2} = \frac{4m^{3}}{3g^{2}}$

Solitons: Definition and Examples

Definition: Soliton is a static, localized, finite energy solution Examples:

non-topological soliton:

$$\mathscr{L} = (\partial_{\mu}\phi)^{2} - m^{2}\phi^{2} + g^{2}\phi^{4} \rightarrow \phi_{c}(x) = \frac{m}{g}\mathrm{sech}(mx)$$
 characteristic size: $L = m^{-1}$ Energy: $E_{non-top} = \int dx (\partial_{x}\phi)^{2} = \frac{4m^{3}}{3\sigma^{2}}$

• topological soliton:

$$\mathcal{L} = (\partial_{\mu}\phi)^2 - g^2(\phi^2 - m^2/g^2)^2 \rightarrow \phi_c(x) = \frac{m}{g} \tanh(xm)$$
 characteristic size: $L = m^{-1}$, Energy: $E_{top} = \frac{8m^3}{3g^2}$ new characteristic: topological charge Q

Idea: Understand Solitons and their properties quantum mechanically!

$$ullet$$
 expand $\phi_c(x)=\sqrt{R}\intrac{dk}{\sqrt{4\pi|k|}}ig(e^{ikx}lpha_k+e^{-ikx}lpha_k^*ig)$

Idea: Understand Solitons and their properties quantum mechanically!

• expand
$$\phi_c(x) = \sqrt{R} \int rac{dk}{\sqrt{4\pi |k|}} (e^{ikx} lpha_k + e^{-ikx} lpha_k^*)$$

• promote coefficients to creation and annihilation operators $\hat{a}_k^{\dagger}, \, \hat{a}_k$ with $[\hat{a}_k, \hat{a}_p^{\dagger}] = \delta_{kp}$

Idea: Understand Solitons and their properties quantum mechanically!

- ullet expand $\phi_c(x)=\sqrt{R}\intrac{dk}{\sqrt{4\pi|k|}}(e^{ikx}lpha_k+e^{-ikx}lpha_k^*)$
- promote coefficients to creation and annihilation operators $\hat{a}_k^{\dagger}, \, \hat{a}_k$ with $[\hat{a}_k, \hat{a}_p^{\dagger}] = \delta_{kp}$
- construct quantum soliton state self-consistently as coherent state: $|\text{sol}\rangle = e^{-\frac{1}{2}|\alpha_k|^2} \sum_{n_k=0}^{\infty} \frac{\alpha_k^{n_k}}{\sqrt{n_k!}} |n_k\rangle \rightarrow \hat{a}_k |\text{sol}\rangle = \sqrt{N_k} |\text{sol}\rangle$

Idea: Understand Solitons and their properties quantum mechanically!

- expand $\phi_c(x) = \sqrt{R} \int rac{dk}{\sqrt{4\pi |k|}} (e^{ikx} lpha_k + e^{-ikx} lpha_k^*)$
- promote coefficients to creation and annihilation operators \hat{a}_k^{\dagger} , \hat{a}_k with $[\hat{a}_k,\hat{a}_p^{\dagger}]=\delta_{kp}$
- construct quantum soliton state self-consistently as coherent state: $|\mathrm{sol}\rangle = e^{-\frac{1}{2}|\alpha_k|^2} \sum_{n_k=0}^{\infty} \frac{\alpha_k^{n_k}}{\sqrt{n_k!}} |n_k\rangle \rightarrow \hat{a}_k |\mathrm{sol}\rangle = \sqrt{N_k} |\mathrm{sol}\rangle$
- classical limit: $\langle \operatorname{sol}|\hat{\phi}_c|\operatorname{sol}\rangle = \phi_c$, $|\alpha_k|^2 \equiv N_k$: occupation of corpuscles in mode k.

Implications: Non-Topological Soliton

- total constituent number: $N = \int_k N_k = \frac{m^2}{g^2} \left(\frac{\log(2)8}{\pi} \right)$
- energy: $E_{non-top} = \int_k |k| N_k = \frac{4m^3}{3g^2}$ dominant contribution to total number and energy: $k \sim m!$

Implications: Non-Topological Soliton

- total constituent number: $N = \int_k N_k = \frac{m^2}{g^2} \left(\frac{\log(2)8}{\pi} \right)$
- energy: $E_{non-top} = \int_k |k| N_k = \frac{4m^3}{3g^2}$ dominant contribution to total number and energy: $k \sim m!$
- vacuum instability: $\langle 0|sol \rangle = e^{-\frac{N}{2}} \neq 0$ vacuum can decay into soliton quantum mechanically!

Implications: Topological Soliton

- total constituent number: $N = \int_k N_k \sim \log(k_0)|_{k_0 \to 0} \to \infty$ dominant contribution to N: k = 0!
- $E_{top} = \int_{k} |k| N_{k} = \frac{8m^{3}}{3g^{2}}$ dominant contribution to energy: $k \sim m!$

Implications: Topological Soliton

- total constituent number: $N = \int_k N_k \sim \log(k_0)|_{k_0 \to 0} \to \infty$ dominant contribution to N: k = 0!
- $E_{top} = \int_{k} |k| N_{k} = \frac{8m^{3}}{3g^{2}}$ dominant contribution to energy: $k \sim m!$
- quantum stability: $\langle 0|sol\rangle=e^{-\frac{N}{2}}=0$ quantum origin of topological charge: infinite occupation of k=0 corpuscles!

Topological Soliton as Convolution

Idea: use convolution to disentangle energy and topology

•
$$\phi_c(x) = \frac{m}{g} \left(\operatorname{sign} \star \operatorname{sech}^2 \right) (mx)$$

Topological Soliton as Convolution

Idea: use convolution to disentangle energy and topology

•
$$\phi_c(x) = \frac{m}{g} \left(\operatorname{sign} \star \operatorname{sech}^2 \right) (mx)$$

• convolution theorem: $\alpha_k = t_k c_k$

$$c_k \equiv \sqrt{\pi m} \frac{k}{g} \operatorname{csch}\left(\frac{\pi k}{2m}\right), \ t_k \equiv \frac{i}{\sqrt{k}}$$

energy encoded in c_k quanta: $H=\int c_k^\dagger c_k$

topological charge encoded in pole of t_k at k=0!

Topological Soliton as Convolution

Idea: use convolution to disentangle energy and topology

•
$$\phi_c(x) = \frac{m}{g} \left(\operatorname{sign} \star \operatorname{sech}^2 \right) (mx)$$

• convolution theorem: $\alpha_k = t_k c_k$

$$c_k \equiv \sqrt{\pi m} \frac{k}{g} \operatorname{csch}\left(\frac{\pi k}{2m}\right), \ t_k \equiv \frac{i}{\sqrt{k}}$$

energy encoded in c_k quanta: $H=\int c_k^\dagger c_k$

topological charge encoded in pole of t_k at k = 0!

• non-topological soliton: t_k trivial

Soliton-Anti-Soliton Interaction

• topological charge of soliton-anti-soliton pair:

$$Q = 1 + (-1) = 0$$

Soliton-Anti-Soliton Interaction

• topological charge of soliton-anti-soliton pair:

$$Q = 1 + (-1) = 0$$

• semi-classical result: interaction among pair of solitons seperated by distance $a: \sim -e^{-am}$

Soliton-Anti-Soliton Interaction

- topological charge of soliton-anti-soliton pair: Q = 1 + (-1) = 0
- semi-classical result: interaction among pair of solitons seperated by distance $a: \sim -e^{-am}$
- quantum picture: $H = \int d(k/m) \left(\hat{c}_k^{\dagger} \hat{c}_k + \hat{c}_k^{\dagger} \hat{c}_k + \hat{c}_k^{\dagger} \hat{c}_k + \hat{c}_k^{\dagger} \hat{c}_k \right)$
- first and second term: energy of individual soliton
- third and fourth term: interaction between solitons
- total number finite → vacuum decay due to attractive interactions of corpuscles in the different solitons

Summary and Outlook

Summary:

- represent solitons quantum mechanically as coherent states
- properties such as energy and topology encoded in distribution of corpuscles
- attractive potential due to interaction of corpuscles.

Summary and Outlook

Summary:

- represent solitons quantum mechanically as coherent states
- properties such as energy and topology encoded in distribution of corpuscles
- attractive potential due to interaction of corpuscles.

Outlook:

- include 1/N corrections
- corpuscular theory of instantons
- coherent state picture of gravitational backgrounds

Classicality vs. Quantumness Solitons in 1+1 Dimensions: Semi-classical Treatment Corpuscular Theory of Solitons Summary and Outlook

Thank You for Your Attention