Cut n' paste spacetimes

Mario Flory

Max-Planck-Institut für Physik

Friday the 13th of November, 2015

Einsteins Field Equations

Spacetime curvature \sim distribution of matter and energy

Einsteins Field Equations

$$
G=T
$$

Spacetime curvature \sim distribution of matter and energy
G: Einstein tensor
T : Energy-momentum tensor (a.k.a. stress energy tensor)

Einsteins Field Equations

$$
G_{\mu \nu}[g]=R_{\mu \nu}[g]-\frac{1}{2} R[g] g_{\mu \nu}=\frac{8 \pi G_{N}}{c^{4}} T_{\mu \nu}\left[\phi, \psi, A_{\nu}, \ldots\right]
$$

Spacetime curvature \sim distribution of matter and energy
G: Einstein tensor
T : Energy-momentum tensor (a.k.a. stress energy tensor)
g : Metric tensor
$\phi, \psi, A_{\nu}, \ldots:$ Matter content

Einsteins Field Equations

Not to scale:

- Crab Nebula (M1): diameter ~11ly
- Crab Pulsar (PSR B0531+21): diameter ~25km
- Schwarzschild radius: $r_{s} \sim 4 \mathrm{~km}$

Toy-models

Toy-models:

- simplified
- tractable
- yielding qualitative insights

Question: What is the backreaction of an infinitely thin (= codimension one) hypersurface carrying energy-momentum?

Answer: Israel junction conditions!

Israel junction conditions

In electromagnetism: To describe field around an infinitely thin charged surface Σ, integrate Maxwells equations in a box around Σ :

$$
\Rightarrow \vec{E}_{\|} \text {continuous, } \vec{E}_{\perp} \text { discontinuous on } \Sigma
$$

In gravity: To describe backreaction of an infinitely thin massive surface, integrate Einsteins equations in a box
\Rightarrow Israel junction conditions [lsrael, 1966]:

$$
\left(K_{i j}^{+}-\gamma_{i j} K^{+}\right)-\left(K_{i j}^{-}-\gamma_{i j} K^{-}\right)=-\kappa S_{i j}
$$

$S_{i j}$: energy momentum tensor on the brane, $\gamma_{i j}$: induced metric, $K^{ \pm}$: extrinsic curvatures depending on embedding.

Israel junction conditions

Spacetime 2

Take two spacetimes (1 \& 2) and define codimension one hypersurfaces $\Sigma_{1 / 2}$ such that they have the same topology. If the induced metric on $\Sigma_{1 / 2}$ is the same ($\gamma_{1}=\gamma_{2} \equiv \gamma$), the two spacetimes can be matched by identifying $\Sigma_{1 / 2}$ if the energy-momentum on Σ satisfies

$$
\left(K_{i j}^{+}-\gamma_{i j} K^{+}\right)-\left(K_{i j}^{-}-\gamma_{i j} K^{-}\right)=-\kappa S_{i j} .
$$

Examples I: spherical wormholes

- Wormhole connecting two Schwarzschild exteriours, no event horizons.
- Timedependent case analytically tractable.
- Thin shell of matter must carry exotic matter with negative energy.
- Energy conditions are violated: $S_{i j} k^{i} k^{j}<0$ somewhere at shell.
[Visser: Lorentzian Wormholes]

Examples II: polyhedral wormholes

- Analytically tractable even without spherical symmetry.
- Exotic matter is concentrated at edges of cube, wormhole can be transversed without encountering it.
[Visser: Lorentzian Wormholes]

Examples III: polyhedral universes

- Take a compact (possibly polyhedral) part of Minkovsky spacce (or dS/AdS).
- Glue it's faces onto each other to obtain a compact universe.
- In some cases, this works with $S_{i j}=0$, i.e. naturally without matter present as "spacetime glue".
[Visser: Lorentzian Wormholes, Levin: How the Universe got its spots]

Examples IV: holographic Kondo model

Field theory picture:

Gravity picture:
spin impurity

$$
S=S_{C S}[A]-\int d^{3} x \delta(x) \sqrt{-g}\left(\frac{1}{4} f^{m n} f_{m n}+\gamma^{m n}\left(\mathcal{D}_{m} \Phi\right)^{\dagger} \mathcal{D}_{n} \Phi+V\left(\Phi^{\dagger} \Phi\right)\right)
$$

Examples IV: holographic Kondo model

- Due to Yang-Mills field a^{m}, SEC is violated everywhere in the bulk.
- Hence brane starts at boundary and falls into black hole, does not turn around and bend back to boundary.
- Numerical results for brane embedding w.r.t. right-hand side of bulk:

[Erdmenger et. al.: 1410.7811, 1511.03666]

Examples IV: holographic Kondo model

- Boundary RG flow \Leftrightarrow Reduction of spacetime volume.
- Defect entropy \Leftrightarrow Additional strip of event horizon.
[Erdmenger et. al.: 1410.7811, 1511.03666]

Thank you for your atention

