





Muon-induced neutrons indirect detection experiment

# Measurement of muon-induced neutrons

IMPRS colloqium - 08/04/2016







- 1.  $0\nu\beta\beta$ , muon-induced neutrons and motivation of Minidex
- 2. Working principle and general analysis strategy
- 3. Minidex Run 1
- 4. Minidex Run 2 and fast neutron detector
- 5. Summary and outlook

# 0νββ





Dp. Dg > 1 t

# Experiments (e.g. GERDA) are searching for the $0\nu\beta\beta$ , if exists:

- $\rightarrow$  determines nature of v (Dirac or Majorana)
- → gives information on absolute neutrino mass / mass hierarchy
- $\rightarrow$  implies lepton number violation



Low backgrounds are required to measure  $0\nu\beta\beta$  !!!





# 1.1 Muon-induced neutrons



Muons



Earth surface

### **Muon-induced neutrons**

Neutron production via different processes: photo-nuclear interactions (dominant at ~10GeV), muon capture, ...





# **1.2 Motivation for Minidex**



Muon-induced neutrons as background source for low-background experiments

Direct background: Generation of signals in the detectors Indirect Background: Production of long-lived radioactive isotopes



# **1.2 Motivation for Minidex**



### Muon-induced neutrons as background source for low-background experiments

Direct background: Generation of signals in the detectors Indirect Background: Production of long-lived radioactive isotopes

Problem: Neutron production rates as function of muon energy and material are not well known





# 1.3 Origin of Minidex idea



Original research project: Investigate neutron capture on germanium detectors



AmBe neutron source

Thermal neutron capture on hydrogen with 2.223 MeV gammas

Use this idea to investigate muon-induced neutrons



# 1.4 Minidex project



### Experiment

Built up experiment in shallow underground lab (~16m.w.e.):

- Suppress cosmic neutron flux (at sea level)
- Still high muon flux
- Good accessibility





#### Monte Carlo

Monte Carlo of lab and Mindex setup (Geant4 9.6.2 interfaced with Mage)

|     |          | 1 |
|-----|----------|---|
|     | 8.6 m    |   |
|     |          |   |
|     | 9 m      |   |
|     | Soil     |   |
|     |          |   |
|     |          |   |
|     |          |   |
| 1-m |          |   |
| E   | 5.9 m    |   |
|     |          |   |
|     | Concrete |   |







- 1. Muon-induced neutrons and motivation of Minidex
- 2. Working principle and general analysis strategy
- 3. Minidex Run 1
- 4. Minidex Run 2 and fast neutron detector
- 5. Summary and outlook

# 2.1 Working principle of Minidex





Define a trigger: Allowed time difference between the panels is -40ns to +20ns





Time distribution between trigger and a detected 2.2MeV gamma





#### Look for 2.2MeV gamma's in the germanium detectors





#### Look for 2.2MeV gamma's in the germanium detectors







Inside  $T_{win}$  - to collect the whole signal: <2ms Outside  $T_{win}$  – to collect the background: >4ms









- 1. Muon-induced neutrons and motivation of Minidex
- 2. Working principle and general analysis strategy
- 3. Minidex Run 1
- 4. Minidex Run 2 and fast neutron detector
- 5. Summary and outlook



## 3.1 Minidex run 1 setup





IMPRS colloquium - 08/04/2016



## 3.1 Minidex run 1 setup



High-purity germanium detectors



Plastic container with water

# 3.2 Minidex run 1 energy spectrum



- Commissioning run
   (July 2015 to Jan. 2016)
  - $\rightarrow$  ~100 days of data
- Efficiencies of scintillator panels only 80-90 %
- No small scintillator panels installed

 $\rightarrow$  lead signal contaminated by water

 Energy resolution (FWHM) at 2.2MeV: ~2.8keV



### 3.3 Data MC comparison





#### Raphael Kneißl

# 3.3 Signal to background ratio



- Only the two big panels generate the trigger
- Efficiency of panels are taken into account
- $T_{win} = 2ms \rightarrow S/B \sim 7$
- $T_{win} \le 0.1 \text{ms} \rightarrow \text{S/B} \sim 60$

22



# 3.3 Signal to background ratio



Good time behavior reconstruction of our MC for the detection of muon-induced neutrons in our setup







- 1. Muon-induced neutrons and motivation of Minidex
- 2. Working principle and general analysis strategy
- 3. Minidex Run 1
- 4. Minidex Run 2 and fast neutron detector
- 5. Summary and outlook





New scintillators → efficiencies >99 %









Six new scintillator

panels installed  $\rightarrow$  different trigger settings possible

 Additional fast neutron detector (FND), Gd-loaded liquid scintillator, from Tsinghua University -> crosscheck



 Run 2 started Jan. 2016 (data taking ongoing)
 → ~60 days of data

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$ 



4.3 Signal to background ratio

• Two big and two small panels generate the trigger

 $\rightarrow$  clean lead signal

• 
$$T_{win} = 2ms \rightarrow S/B \sim 8$$

- T<sub>win</sub> ≤ 0.1ms → S/B~65
   → higher values than run 1 and no efficiency correction involved
- No fully integrated simulation for run 2 up to now

ρ<sup>fit</sup><sub>S/B</sub>



### 4.4.1 Fast neutron detector





# 4.4.2 Analysis strategy for FND



 Same goal and similar analysis as for the germanium detectors: Investigate the time behavior of our MC for muon-induced neutrons in our setup
 → Look for signals in FND after trigger



- Different trigger settings possible

   → E.g. choose only panels next to
   neutron detector
- Analysis just started
   → Only first preliminary results are shown





Different pulse shapes for neutrons and gammas/betas in liquid scintillator



 $\rightarrow$  Pulse shape discrimination

IMPRS colloquium - 08/04/2016



# 4.4.2 Analysis strategy for FND



Background measurement

Energy resolution (FWHM) of typical liquid scintillators at 2MeV: ~400keV

Gammas from neutron capture or natural radioactivity

Muons

Preliminary

# 4.4.3 Energy spectrum of FND

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$ 

counts

10<sup>7</sup>

10<sup>6</sup>

10<sup>5</sup>

**10**<sup>4</sup>

10<sup>3</sup>

10<sup>2</sup>

10

1

0

70000

adc channels [a.u.]

60000

50000

3.416602e+09

Data

4236

7184

Entries

Mean

RMS





### 4.4.4 FND data with neutron source



Prompt-delayed time coincidence applied (here <40 $\mu$ s)  $\rightarrow$  Only prompt events plotted



 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$ 

# 4.4.5 FND data from Minidex run 2





Prompt-delayed time coincidence applied (here <40 $\mu$ s)  $\rightarrow$  Only prompt events plotted



# 4.4.5 FND data from Minidex run 2

Prompt-delayed time coincidence applied (<40µs) and in coincidence with a scintillator panel trigger (<1µs)  $\rightarrow$  Only prompt events plotted



 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$ 

### IMPRS colloquium - 08/04/2016

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$ 

energy [a.u.] 100 energy

80

60

40

20

0 <u></u>

0.1

0.2

0.3

0.4

0.5

0.6

0.7

discrimination factor

0.8

Raphael Kneißl

# Coincidence with a scintillator panel trigger

# No coincidence with a scintillator panel trigger

4.4.5 FND data from Minidex run 2



39

# Inside time window (so after scintillation panel trigger) some orders higher neutron rate than outside time window FND sees muon-induced neutrons

No coincidence with a scintillator panel trigger



4.4.5 FND data from Minidex run 2

IMPRS colloquium - 08/04/2016

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$ 

<u>×10</u>³

Jata

0.2

0.1

0.3

energy [a.u.] 120

100

80

60

40

20

0 \_ 0

Coincidence with a

scintillator panel trigger







- 1. Muon-induced neutrons and motivation of Minidex
- 2. Working principle and general analysis strategy
- 3. Minidex Run 1
- 4. Minidex Run 2 and fast neutron detector
- 5. Summary and outlook



# 5. Summary and outlook



### Summary

Motivation for Minidex: Measure muon-induced neutrons for different muon energies and materials

 Minidex run 1: Muon-induced neutrons detected in lead with maximum S/B-ratio ~60, underproduction of neutrons in MC observed

Feedback to improve MC 📄 Optimize future low-background experiments

- Minidex run 2: New scintillators ( + four small scintillators) → clean lead signal and maximum S/B-ratio increased to ~65 (preliminary)
- Additional fast neutron detector installed → Muon-induced neutrons have been detected



# 5. Summary and outlook



### Summary

Motivation for Minidex: Measure muon-induced neutrons for different muon energies and materials

Minidex run 1: Muon-induced neutrons detected in lead with maximum S/B-ratio ~60, underproduction of neutrons in MC observed

Feedback to improve MC improve MC improve for the second experiments

- Minidex run 2: New scintillators ( + four small scintillators)  $\rightarrow$  clean lead signal and maximum S/B-ratio increased to  $\sim$ 65 (preliminary)
- Additional fast neutron detector installed  $\rightarrow$  Muon-induced neutrons have been detected

### Outlook

- Analysis of Minidex run 2 is ongoing
- Possible tests of further materials in the future (e.g. steel)
- Possible tests at different muon energies (different underground laboratory)



## Backup slide



