



# **GERDA and GeDet Status Report**

# OUTLINE:

Neutrinoless Double Beta-Decay HPGe for Ovbb Detection The Concept of GERDA Where is GERDA now? GERDA Activities at MPP GeDet news





# Who is GERDA/GeDet at MPP?



Allen Caldwell Director: Projector leaders: Béla Majorovits (GERDA), Iris Abt (GeDet) Postdocs: Josef Janicsko, Xiang Liu, Jens Schubert Ph.D.s: Daniel Lenz, Jing Liu Group engineer: Franz Stelzer, Markus Kästle (until 12/08) Werkstudenten/in Sabine Hemmer, Ping Li, Christopher Meier, & Interns: Annika Vauth, Andreas Glück (until 07/08) Gregor Volk (until 07/08) **Construction:** Karlheinz Ackermann, Stefan Mayer, Sven Vogt

Many thanks to colleagues from electronic & mechanic departments!





#### **The Neutrino Mass**

Neutrino-oscillation experiments have taught us: Neutrinos must have a non vanishing rest mass!

We only have information on the squared mass difference between the eigenstates

- →Absolute mass scale still unknown
- We do not know the sign of  $\Delta m_{32}$
- $\rightarrow$  Mass hierarchy is still unknown

Are Neutrinos their own Antiparticles, ie Majorana particles?

→ Nature of the Neutrinos still unknow







# **Double Beta-Decay**

Initial state nucleus has to be bound less than final state nucleus, but stronger than intermediate.

Only possible in even-even nuclei.

35 isotopes decay via 2vββ.









Uei

W



#### **Neutrinoless Double Beta-Decay**

e

U<sub>ei</sub>

Neutrino accompanied Double-Beta Decay:

**Neutrinoless Doubel-Beta Decay:** 

violated. Number is (Z, A) (Z + 2, A)NUCLEAR PROCESS

V.

Neutrinoless mode of double beta decay can only occur if:

- 1. Neutrino is identical with its antiparticle (Majorana particle)
- 2. Neutrino is massive (helicity flip required)

**Phase space** 

factor (~Q<sup>5</sup>)

$$1/\tau = G(Q,Z) |M_{nucl}|^2 < m_{ee}^{2}$$

Matrix

element

**θνββ Decay** rate

**Effective Majorana** 

Neutrino mass



#### **Neutrinoless Double Beta-Decay**

Signature: Sharp peak at Q-value of the decay

(2039 keV for 76Ge)











# <sup>76</sup>Ge as Source and Detector

REAL PROPERTY

| Very good energy resolution                                | Background due to 2vββ decay negligible           |  |  |
|------------------------------------------------------------|---------------------------------------------------|--|--|
| Source = Detector                                          | High signal detection efficiency (95%)            |  |  |
| Very high purity of detector material<br>(zone refinement) | Very low intrinsic background                     |  |  |
| Considerable experience                                    | Well known and reliable,<br>improvements possible |  |  |
| Natural abundance of <sup>76</sup> Ge 7,44%                | Enrichment necessary                              |  |  |













### **The GERDA Collaboration**



Institute for Reference Materials and Measurements, Geel, Belgium Max-Planck-Institut für Kernphysik, Heidelberg, Germany Max-Planck-Institut für Physik (Werner-Heisenberg-Insititut), München, Germany Physikalisches Institut, Universität Tübingen, Germany Institut für Kern- und Teilchenphysik, Universität Dresden, Germany Dipartimento di Fisica dell'Univeristá; di Padova e INFN Padova, Padova, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy Universitá; di Milano Bicocca e INFN Milano, Milano, Italy Jagiellonian University, Cracow, Poland Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Institute for Theoretical and Experimental Physics, Moscow, Russia Joint Institute for Nuclear Research, Dubna, Russia Russian Research Center Kurchatov Institute, Moscow, Russia University Zurich, Switzerland











Place array of naked HPGe-detectors enriched in <sup>76</sup>Ge in the center of a stainless cryostat filled with LAr.









Place array of naked HPGe-detectors enriched in <sup>76</sup>Ge in the center of a stainless cryostat filled with LAr.







> Place array of naked HPGe-detectors enriched in <sup>76</sup>Ge in the center of a stainless cryostat filled with LAr.



Ap. Ag >it



















If Klapdor-Kleingrothaus claim is true, phase-I expect ~13

signal events, and 3 bg. events in 10keV window at Q



GERDA and GeDet































Arrival of the cryostat at LNGS on 6<sup>th</sup> of March 2008



































**Construction of Water Tank on 30th of April 2008** 





Max-Planck-Institut für Physik, Project Review 2008, Dec. 15-16

## Where is GERDA now:





#### **Construction of Water Tank 7th of May 2008**









#### Construction of Water Tank on 19th of May 2008

























#### Superstructure on 11th of July 2008









#### Superstructure on 18th of July 2008







Superstructure as of now

Presently the water tank is filled with water to the top.

Static tests are being performed.

**Emergency drainage will be simulated.** 

Ventilation system for hall A at Gran Sasso is being worked out







# GERDA

### **The GERDA Clean-Room:**

#### Installation of Clean Room at Gran Sasso will start January 26 2009





# GERDA

## **The GERDA Commissioning Lock:**

For Commissioning a preliminary lock system will be installed: Two strings with a total of 6 detectors can be insrted







#### **The GERDA Commissioning Lock:**



#### Last parts are presently being worked on: Welding, Leak testing, Electropolishing







#### **Installation of the GERDA Commissioning Lock:**

#### Infrastructure for cleaning sequence is established.

Clean Room cabin for installation also of final lock has been erected



The Commissioning lock will be assembled and mechanically tested early 2009







The Commissioning lock will be sent for detector integration to LNGS in March 2009



## **The GERDA Final Lock:**



The final lock system will allow for insertion of up to 74 detectors on 16 linear pulleys.



Approval of Pressure vessel code, extraction of production drawings, Acompanying of production

will be done by external company.









### **Germanium Purification and Crystal Growing:**

Purification: PPM, Germany 90% yield for 6N material. No isotopic dilution with depleted material detected! Underground storage near PPM

found, logistics tested

# Enriched material will be processed in 2009

|               | Resistvity |                      | Electron conc.     |                | Mobility |                       |  |
|---------------|------------|----------------------|--------------------|----------------|----------|-----------------------|--|
|               | (Ωcm)      |                      | (10 <sup></sup> cn | U°cm°)         |          | (cm <sup>-</sup> /vs) |  |
| Temperature   | 297 K      | 77 K                 | 297 K              | 77 K           | 297 K    | 77 K                  |  |
| CZ4_1-2       | 46.9       | 11.8                 | 5.20               | 1.44           | 2561     | 36600                 |  |
| CZ4_2-2       | 51.6       | 11.5                 | 4.14               | 1.50           | 2921     | 36090                 |  |
| CZ4_3-2       | 54.3       | 9.7                  | 3.55               | 1.78           | 3238     | 36190                 |  |
| CZ4_5-2       | 44.2       | 7.8                  | 4.60               | 2.22           | 3066     | 36120                 |  |
| CZ4_6-2       | 42.7       | 6.9                  | 4.60               | 2.58           | 3182     | 35100                 |  |
| CZ4_8-2       | 30.2       | 4.3                  | 6.36               | 4.11           | 3246     | 34970                 |  |
| CZ4_9-2       | 25.6       | 3.2                  | 6.89               | 5.57           | 3539     | 34620                 |  |
| CZ4_11-2      | 13.4       | 1.6                  | 12.3               | 12.24          | 3772     | 32170                 |  |
| CZ4_12-2      | 5.8        | -                    | 45.3               | -              | 2366     | -                     |  |
|               | Resistv    | Resistvity E         |                    | Electron conc. |          | Mobility              |  |
|               | (Ωcm)      | (10 <sup>13</sup> cr |                    | $(cm^2/Vs)$    |          | )                     |  |
| Temperature   | 297 K      | 77 K                 | 297 K              | 77 K           | 297 K    | 77 K                  |  |
| Ge-FZ-V3105_A | 57,9       | 3379                 | 7,1                | 0,01           | 569      | 25130                 |  |
| Ge-FZ-V3105_E | 49         | -                    | 12,9               |                | 990      | -                     |  |

**Béla Majorovits** 

#### Crystal Growing: IKZ, Berlin:

Dedicated Czochralski puller operational. 8 crystals already pulled, more expected still this year.

Characterization by Hall effect measurements (charge carrier density) and PTIS (impurity identification) by IKZ.

Uni Dresden will do Photoluminescence measurements.









Phase II will make use of extra background reduction efficiency by distinction of multi-site and single-site events:

**18-fold segmentation of detectors** 

It has been shown previously that this design works well.







# **Prototype Detector in Cryoliquid:**

GERDA

Core

•1<sup>st</sup> time: operation of segmented n-type detector in LN
•Constant leakage current: < 6pA</li>
•Calibration Spectrum Th-228, 18 Segments
19 spectra are taken at the same time:







Special detector for study of surface effects: 18+1 fold segmented detector



•Same size as 18-fold segmented detector

•19<sup>th</sup> segment: 5mm thick
 idea: study surface effects,
 Dead layer thickness, α sources





GERDA



**Béla Majorovits** 





Physically expected: Sum of segment energies = Core energy
observed events with: Sum of segment energies >> Core energy



Some events show unexpected negative pulses

- •Can be explained by trapped charges
- •Surface effect, no strange evt. in middle, only top/bottom

**Béla Majorovits** 

GERDA and GeDet





#### Simulation of pulse shapes:

- Calculation of fields
- Calculation of trajectories
- Extraction of pulse shapes
- → Determination of crystal axis by occupancy distribution
- → Reconstruction of Impurity Concentration









#### SiPMs for LAr scintillation light detection

GERDA uses LAr as shield against external background → Use 128nm scintillation light of LAr as veto against background.

\$10365-11-100

| Typical values | PMT             | SiPM            |
|----------------|-----------------|-----------------|
| HV             | 1000 V          | 30 - 70 V       |
| Dark rate      | kHz             | 100 kHz - MHz   |
| Gain           | 10 <sup>6</sup> | 10 <sup>6</sup> |
| QE             | 20 - 30 %       | 20 - 60 %       |
| Dyn. range     | ?               | Nb. of pixels   |
| Linearity      | Linear          | Nonlinear       |
| Weight         | kg              | 100 mg          |
| Surface        | cm <sup>2</sup> | mm <sup>2</sup> |
| B field        | sensitive       | insensitive     |

SiPMs are under study for many applications: MAGIC, ILC, ... now also for GERDA.

Pixelized silicon APDs in . Geiger mode

#### Very high QE (up to 60%?) → Do photon counting!





Nice feature: Dark count rate at LAr temperature is nearly six orders of magnitudes lower than at room temperature!





#### SiPMs for LAr scintillation light detection

Photon Counting still works at LAr temperature despite deteriorated pulse shapes (integration does the job)!



Convert 128nm scintillation light to visible (scintillating fibre plus TPB on VM2000 foil) → SiPM can detect radiation in LAr.

Performance not yet satisfactory, but improvement in the way (keep LAr Oxygen free)





LAr + Th source left, right LN with no source





## **Conclusions:**

- GERDA hardware at LNGS well advanced
- Clean Room to be installed until March 2009
- Commissioning lock operational early 2009
- Operation of 18-fold n-type HPGe detector in LN successful
- New 18+1 fold segmented detector for understanding of surface effects
- Simulation of Pulse Shapes
- GERDA data taking will start next year







# **GERDA Phase II Detectors Deliverables:**

| 1. Enrichment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. Purification                                            | 3. Crystal growing                                                                  | 4. Detector                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                     |                               |
| ECP,Russia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | IKZ,Berlin:                                                                         | Canberra-France               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>PPM, Germany</b><br>20% World supply<br>90% High yield. | <ul> <li>Grown first crystal</li> <li>Purity needs<br/>improvement</li> </ul>       | Prototype detector<br>working |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No isotopic dilution<br>with depleted material             | Canberra, Oak<br>Ridge:                                                             |                               |
| I DERIVATION OF THE PARTY OF TH | Enriched material will<br>be processed in 2009             | Alternative to n-type<br>segmented detectors:<br>p-type BeGE<br>detectors with high | An arrated detector           |
| 37,5 kf of enriched<br>Material delivered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            | pulse shape<br>discrimination<br>efficiency                                         | inside cryoliquid             |

