String Theory and Cosmology

Marco Zagermann

Max-Planck-Institute for Physics, Munich

Outline

1. String theory

2. String theory at the MPP

3. String theory and Cosmology

4. Inflation and de Sitter vacua in IIA string theory

1. String Theory

Point particle closed open "String"

→ One string – many oscillation modes:

"Unified" theory of all particles and interactions

Finite extension smoothes out quantum divergencies:

→ Perturbative theory of quantum gravity!

Many more curious properties:

- Quasi-uniqueness
 - ⇒ I, IIA, IIB, HetE, HetO → "M-theory"
- Supersymmetry
- 10D spacetimes
 - \Rightarrow Compactification: $\mathcal{M}^{(10)} = \mathcal{M}^{(4)} \times \mathcal{M}^{(6)}$
 - $\Rightarrow \mathcal{M}^{(6)}$ is not unique \Rightarrow Many effective 4D theories
 - → Many light scalar fields ("moduli")
 (E.g., from internal metric components, etc.)
 - → Have to be made sufficiently massive ("Moduli stabilization")
 - **⇒** Flux compactifications + quantum corrections
 - ⇒ "Landscape" of string theory vacua

Solitonic extended objects

- Duality symmetries
 - Between different string compactifications
 - **⇒** T-duality/mirror symmetry, S-duality, . . .
 - Between string theory/gravity and gauge theories
 - ⇒ "AdS/CFT correspondence"

2. String Theory at the MPP

I. Scattering amplitudes, low mass strings, topological strings

Lüst, Stieberger, Knapp, Härtl, Schlotterer,...

- String Hunter's Companion for the LHC
 Lüst, Nawata, Schlotterer, Stieberger, Taylor
- Multiparton amplitudes, higher point spin field correlators
 Haertl, Schlotterer, Stieberger
- Disk scattering of open and closed string moduli
 Knapp, Stieberger
- D-branes in topological string theory, mirror symmetry
 Knapp

II. Particle Phenomenoloy from string theory, vacuum structure

Lüst, Blumenhagen, Jurke, Moster, Plauschinn, Schmidt-Sommerfeld,...

- General string landscape constraints
 Dvali, Lüst
- Orientifolds without vector structure
 Bachas, Bianchi, Blumenhagen, Lüst, Weigand
- D-brane instantons
 Blumenhagen, Schmidt-Sommerfeld
- Moduli stabilization with instantons
 Blumenhagen, Moster, Plauschinn
- GUT models from F-theory/type IIB orientifolds
 Blumenhagen, Braun, T. Grimm, Weigand; Jurke

III. AdS/CFT and strongly coupled systems

Lüst, Erdmenger, O'Bannon, Ammon, Meyer, Ngo, Rust, Greubel, Kerner . . .

- Heavy meson diffusion and phase diagrams of AdS/CFT plasmas
 Erdmenger, Kaminski, Kerner, Rust, Teaney
- Transport coefficients for hydrodynamics
 Erdmenger, Haack, Kaminski, Yarom
- Flavor superconductivity
 Ammon, Erdmenger, Kaminski, Kerner
- Superconducting fermionsO'Bannon
- AdS/CFT dual of Fayet-Iliopoulos terms
 Ammon, Erdmenger, Hoehne, Lüst, Meyer

IV. Supergravity, moduli stabilization and cosmology

Lüst, Zagermann, Koerber, Wrase, Caviezel, S. Körs, T. Schmidt, . . .

- IIA flux compactifications on manifolds with G-structure Caviezel, Koerber, Körs, Lüst, Tsimpis, M.Z.
- Mathematical aspects of flux compactifications
 Koerber, Lüst, Martucci, Tsimpis
- Supersymmetric anomalous U(1)' models

 De Rydt, **T. Schmidt,** Trigiante, Van Proeyen, **M.Z.**,

 cf. also **Plauschinn**
- AdS/CFT applications
 Koerber, Wrase,...
- Various aspects of string cosmology
 Caviezel, Haack, Kallosh, Koerber, S. Körs, Krause, Linde,
 Lüst, Wrase, M.Z.

3. String Theory and Cosmology

If string theory aspires to be truely fundamental, it also has to be consistent with cosmological constraints

These constraints have by now become precise enough to allow for a serious discussion of the cosmological implications of string theory

⇒ "String cosmology"

Many interesting questions concerning e.g.

- Dark matter and astroparticle physics
- Dark energy/cosmological constant problem
- Inflation
- Cosmic strings and other defects
- Time-dependent solutions in string theory
- Big Bang singularity?
- ⇒ This talk: Inflation (and de Sitter vacua)

Inflation = Period of accelerated cosmic expansion in the very early Universe

- ⇒ Elegant solution to various cosmological "problems":
 - Homogeneity problem
 - Flatness problem
 - Origin of primordial density perturbations
 - (• Monopole problem)

etc. ...

Simplest implementation:

Single-field slow-roll inflation:

- Scalar field ϕ ("inflaton")
- ullet Scalar potential $V(\phi)$

$$egin{align} V(\phi) > 0 \ \epsilon &\equiv rac{1}{2} \left(rac{M_P V'}{V}
ight)^2 \ll 1 \ \eta &\equiv \left|rac{M_P^2 V''}{V}
ight| \ll 1 \ \end{pmatrix}$$

Interesting for string theory, because:

- ϵ, η can be very sensitive even to Planck-suppressed corrections to V
- ullet $ho_{
 m inf} \equiv {
 m V}^{1/4}$ can be as high as ${
 m M}_{
 m GUT} pprox 10^{16} {
 m GeV}$
- → Possibly unique window to very high energy physics in the earliest moments of the Universe

⇒ Derive realistic and consistent inflationary models from string theory!

What could be the inflaton?

A popular approach:

Inflaton $\phi \equiv$ a particular modulus, φ^*

Generic problem:

Stabilize the orthogonal moduli, φ^{\perp} , without spoiling the flatness of V along φ^*

$$\Rightarrow \boxed{V_{tot} = V_{inf} + V_{stab}} \ \Leftarrow \ \text{Hope for little interference}$$

Two typical problems one may encounter:

Problem 1: Generically, moduli stabilization and

slow-roll inflation do interfere!

Reason: $V_{\text{stab}} = V_{\text{stab}}(\varphi^{\perp}, \varphi^*)$

A model where interference can be well-controlled:

D3/D7-brane inflation on K3 \times T²/ \mathbb{Z}_2

Haack, Kallosh, Krause, Linde, Lüst, M.Z. (2008)

→ CMB fits with subdominant cosmic string contribution

Battye, Garbrecht, Moss (2006); Bevis, Hindmarsh, Kunz, Urrestilla (2007)

Problem 2: Some moduli may get destabilized whenever $V_{tot} > 0$

Problem 2: Some moduli may get destabilized whenever

 $V_{tot} > 0$

Problem 2: Some moduli may get destabilized whenever

 $\mathsf{V}_{\mathsf{tot}} > 0$

This actually occurs in classical type IIA compactifications on Ricci-flat manifolds (with fluxes and O6/D6 sources)

4. Inflation in type IIA string theory

Classical potential for type IIA compactifications:

```
\begin{split} & \mathsf{V}_{\mathsf{tot}}(\rho,\tau,\ldots) = \mathsf{V}_{\mathsf{flux}}(\rho,\tau,\ldots) + \mathsf{V}_{\mathsf{O6}/\mathsf{D6}}(\tau,\ldots) + \mathsf{V}_{\mathsf{curv}.}(\rho,\tau,\ldots) \\ & \rho = \mathsf{volume} \ \mathsf{modulus} \\ & \tau = \mathsf{4D} \ \mathsf{dilaton} \\ & \mathsf{V}_{\mathsf{curv}} \propto (-\mathsf{R}) \quad (\mathsf{R} = \! \mathsf{6D} \ \mathsf{scalar} \ \mathsf{curvature}) \end{split}
```

4. Inflation in type IIA string theory

Classical potential for type IIA compactifications:

```
\begin{split} & \mathsf{V}_{\mathsf{tot}}(\rho,\tau,\ldots) = \mathsf{V}_{\mathsf{flux}}(\rho,\tau,\ldots) + \mathsf{V}_{\mathsf{O6}/\mathsf{D6}}(\tau,\ldots) + \mathsf{V}_{\mathsf{curv.}}(\rho,\tau,\ldots) \\ & \rho = \mathsf{volume\ modulus} \\ & \tau = \mathsf{4D\ dilaton} \\ & \mathsf{V}_{\mathsf{curv}} \propto (-\mathsf{R}) \quad (\mathsf{R} = \! \mathsf{6D\ scalar\ curvature}) \end{split}
```

For R \geq 0 (e.g. Ricci-flat manifolds), the particular (ρ,τ) -dependence of V_{tot} implies

$$\epsilon \equiv rac{G^{AB}\partial_A V_{tot}\partial_B V_{tot}}{V_{tot}^2} \geq rac{27}{13}$$
 whenever $V_{tot} > 0$

Hertzberg, Kachru, Taylor, Tegmark (2007)

- \Rightarrow Potential is too steep along (ρ, τ) for inflation if $R \ge 0!$
- ⇒ This also rules out de Sitter vacua (cf. today's acceleration)

 \Rightarrow Try negative internal curvature: R < 0

Cf. Silverstein (2007), Haque, Shiu, Underwood, Van Riet (2008)

Problem: What about field directions other than ρ, τ ?

 \Rightarrow Need model, where V_{tot} is known w.r.t. all moduli!

A well-understood class with R \neq 0, where V_{tot} is known explicitly:

Manifolds with SU(3)-structure based on coset spaces:

Koerber, Lüst, Tsimpis; Caviezel, Koerber, S. Körs, Lüst, Tsimpis, M.Z. (2008)

Another no-go theorem along a different direction in field space except for $SU(2) \times SU(2)$

$$\Rightarrow \epsilon \geq 2$$

Caviezel, Koerber, S. Körs, Lüst, Wrase, M.Z. (to appear)

Related Work: Flauger, Ihl, Paban, Robbins, Wrase (to appear)

Only case not covered by no-go theorem: $SU(2) \times SU(2)$

- $\Rightarrow \epsilon = 0$ indeed possible, but $\eta < -2.4$ (large tachyonic mass)
- ⇒ Are there better extrema?

Conclusion:

- Inflation and de Sitter vacua in type IIA more difficult than expected
- It is important to check minimization w.r.t. all moduli
- Maybe additional ingredients and/or quantum corrections are helpful
- Better understanding of cosmology in IIA theory would be nice, b/c particle physics model building is very far developped in IIA (e.g., by the Munich group...)
- To be continued

Suggested further reading...

• J. Erdmenger (Ed.):

String Cosmology

With contributions from

- M. Ammon, R. Brandenberger, C. Burgess, S. Das,
- J. Erdmenger, A. Krause, R. Myers, G. Shiu, M. Wyman, M.Z. Wiley-VCH (2009)
- R. Blumenhagen, D. Lüst, S. Theisen:

Basic Concepts of String Theory

Textbook, Springer (2009), (Sec. Ed. of Lüst/Theisen)

• R. Blumenhagen, E. Plauschinn:

Introduction to Conformal Field Theory

Lecture Notes in Physics, Springer (2009)