Projects of the Electronics Division

Project Review 2008

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Projects in 2008
- Requests for 2009
- Status of Selected Projects
 - HEC-I
 - HEC-II
 - MAGIC-I Sum-Trigger
 - MAGIC-II Camera

- Main projects
 - HEC Hadronic Endcap Calorimeter (EA, EE)
 - HEC-II HEC Electronics Upgrade for the SLHC (EA, EE)
 - MAGIC-II Air Cherenkov Telescope Camera (EA, EE, EP)
 - MDT Monitored Drift Tube Chambers (EA)
 - MDT-II MDT Electronics Upgrade for the SLHC (EA, EE)
- Additional projects
 - Cresst (EP)
 - Gerda (EA, EE, EP)
 - ILC / SiPM (EE)
 - Muon Cooling (EP)
 - SCT (EA)
 - Support for the Semiconductor Laboratory (EP)

Group naming

- EA: Elektroanlagen
- EE: Elektronik Entwicklung
- EP: Elektronikproduktion

Projects in 2008

Average manpower/quarter (Nov. 2008):

Elektronikproduktion (EP): 78MW/Q (Nominal 65MW/Q)

Elektroanlagen (EA): 68 MW/Q (Nominal 65MW/Q)

Elektronik Entwicklung (EE): 110MW/Q (Nominal 90MW/Q)

Requests for 2009

Main tasks in 2009 (requested):

- New MAGIC-I camera (MAGIC-II clone)
- Improved sum-trigger ٠
- Chip development for SLHC-HEC (HEC-II)
- Low-voltage development for SLHC-HEC
- Upgrade for MDT-I (CSM-Chip)
- Chip development for SLHC-MDT (MDT-II)
- CSM module development for SLHC-MDT (MDT-II)

60

50

40

30

20

Man Week

2009/04 2009/Q3 2009/Q2

Status of Selected Projects

MPI Project Review 2008 Munich, 15. December 2008

HEC-I / Low-Voltage System

The HEC low-voltage system is installed in the ATLAS-detector and works well!

(One low-voltage box was changed -> Problem with DC-DC converter)

Test system in our lab

HEC-I / Some Data about Low-Voltage

Low-voltage system supplies the power for the HEC-amplifiers

- One 280V supply
- One control system
- 8 low-voltage boxes (Mounted between the tile fingers)
- One box per quadrant
- Each box is for 40 preamplifier-boards
- Full control and monitoring

Assembled into the ATLAS-detector

LV-box

Upgrade of the Hadronic Endcap Calorimeter (HEC-II)

SLHC luminosity upgrade leads to increased particle rates

- -> Improved amplifiers for the ATLAS-HEC (Factor 10 higher radiation hardness)
 - -> Reduced structure size in amplifier chips (e.g. 250nm or less)
 - -> Possible use of a different technology (SiGe instead of GaAs)

Investigation of technologies from different partners:

- Institute for Semiconductor Physics (Frankfurt/Oder) (SiGe, CMOS)
- Triquint (GaAs)
- IBM (SiGe)
- AMS (SiGe)
- Radiation test (neutrons) at cyclotron in Rez (near Prague)
- Selecting the technology from results (CMOS, SiGe or GaAs)

Some Words about the Radiation Measurement

About 40m cable between the transistor and the measurement system.

- Testing up to 37 devices (transistors)
- Measuring DC-values and S-parameters
- Measurement during neutron irradiation

Some Words about the Radiation Measurement

Up to four devices per board located in the beam

Cabling for RF/DC-signals

Example: SiGe-Bipolartransistor

Parameter S11 ("Impedance")

-0.5

-1.5

- npn-bipolartransistor from IHP
- SiGe-technology
- 0.42x0.84µm² structure size
- 2 elementary cells in parallel
- Included ESD-protection
- Positioned in slot 1

S11_A 2e+07 Hz

4e+07 Hz

8e+07 Hz

MAGIC-I Sum-Trigger

- Start (Development):
- Fabrication and test:
- Installation in La Palma:
- Taking first data:

April 2007 June – August 2007

September 2007

October 2007

Reaching the lowest energy threshold (~25 GeV) ever achieved by any Cherenkov telescope up to date

Light curve of Crab pulsar (2008):

Additional MAGIC-II Development

Control system for calibration laser, test pulser, ...

- FPGA: Xilinx Virtex-4 4VLX40FF1148
- 8 sockets for pulser daughter boards
- Pulse frequency: 0.023 Hz .. 50 MHz
- Pulse width: 10 ns .. 42.9 s
- Leading edge of the 16 pulses adjustable in steps of 11 ps
- •1 socket for pulse input daughter board with max. 2 input channels
- 2 x RS232 input, one on default front panel
- Connector to attach a 4x20 LCD
- Mezzanine board socket with 36 single ended signals and 19 differential
- Option for external clock for pulsers
- Option to cascade several boards
- VGA output
- board for optical link

Production for MAGIC-II in 2008

- Production of pixel-boards
- Assembling the pixels
- Production of control boards (SCCP)
- Production of test pulser boards
- Test of all parts and the assembled pixels
- Assembling the clusters
- •Testing the clusters (function , flatfielding, \ldots)
- 169 clusters (+spares) are ready in October
- Shipped to La Palma in November
- Installing the clusters in only two weeks
- After installation the camera is "switched on" in only one week

The installation is completed 3-4 months before the plan!

MAGIC-II Overview

Situation 2007:

Main task:

- Development of camera electronics
 - Signal transmission system
 - Camera control system
 - Test signal generation
 - Power distribution

November 2008:

MAGIC-II Camera

- 1039 pixels
 - (photomultipiers + signal transm.)
- 7 pixels are grouped into a cluster
- Each cluster has its own test pulse generation and control system

Camera (Frontside)

MPI Project Review 2008 Munich, 15. December 2008

- 4. December 2008:
- First look to the night sky background
- Typical pulsewidth: 1.8ns
- Small coupling from VME-access at some outer ring pixels (Will be solved in spring 2009)

k Run	M 40.0ns	Trig'd
a filitation at the list of the action of the Mathematica in the action of the second state at the second state	an man a Unadam da Ana	e Al Madericante
Zoom Factor: 4 X		
	E E A E	
	· : · · · · : · · · <mark>M</mark> : · · / · · : · ·	
		n de Aliter d'Al
$\Delta A = A = A = A = A = A = A = A$		Mar a rah hamo an
New Strategy Constraints and the second s	na na katalan Batan	and the second state of the second states in the second states in the second states in the second states in the
1 20.0mVΩ	(7 10 0ns) (2	50CS/s (1) 5 28 8mV
Value Mean Min +Width 1.860ns Low re <u>solution</u>	Max Std Dev [2 10.018 [10]	100 points
Add Remove Measurement Measurement Indicators	More Bring Cursors Co	unfigure Cursors 2008 23:06:03

First Measurement

Excerpt from an e-mail received from La Palma (Juan Cortina, last week):

- Checked DCs for dark time (~1 uA, fine) and we saw stars drifting when pointing at zenith
- Introduced default HV settings based on measurements at MPI. They produce relatively flat anode DCs
- We have taken the first showers with MAGIC-II!

Thanks to all people making possible these nice results, especially the HEC-I crew and the MAGIC crew for their encouraged work to be ready in time.

Thank you very much for your attention

MPI Project Review 2008 Munich, 15. December 2008