

Efficiency and timing measurements with pixel-modules

Julien Beyer

II. Physikalisches Institut der Georg-August-Universität Göttingen 26.10.2015

Introduction Large Hadron Collider

▶ p (protor) ▶ ton ▶ neutrons ▶ p (antiprotor) ▶ electron +++> protor/antiproton conversion

Introduction A Toroidal LHC ApparatuS

HL-LHC

- higher luminosity \rightarrow higher particle count
- · detector needs to cope with higher demands

Motivation ITk

- resist harsher conditions
- cope with particle count \rightarrow all silicon tracker
- end of lifetime of Inner Detector

Need for ...

- new generation of pixel detector
- reproducible and unbiased tests during development
- benchmarks for final comparison

 \rightarrow use laser to inject charge with high precission

Probestation

- probestation for positioning and housing of modules
 - accuracy of positioning: $0.25\,\mu m$ (x/y) / $0.1\,\mu m$ (z)
- laser system: 671 nm pulsed laser, external triggering, spot size: $\approx 1{-}2\,\mu\text{m}$

Spatially resolved

Aim

- spatially resolved hit efficiency
- time resolved hit efficiency

Measurement

- use well-known module (FE-I4A + planar n-in-p) for approval
- hole in metallization enables laser injections
- measurement region: 250×250 μm² @ 2 μm
- 1000 injections per point
- amount of injected charge can be varied

885 198	

Spatially resolved

- threshold of discriminator: 3000 e
- injected charge: \approx 6000 e

Spatially resolved

• injected charge: \approx 9000 e

Spatially resolved

• injected charge: $\approx 20\,000\,\mathrm{e}$

Time resolved

Timing

- important: assign hits in detector to correct bunch crossing
- module composition essential for timing behaviour \rightarrow figure of merit
- determine in-time efficiency...
- ...in dependence of amount of charge \rightarrow timewalk

• measurement: vary laser-trigger \rightarrow sample acceptance window

Timing measurements

in-time efficiency

• FWHM: 24.97 ns

17 / 21

Timing measurements

Timewalk

- timewalk results from charge-dependent slope of preamplifier
- $\Delta t(big charge \leftrightarrow small charge) = 20-50 ns$
 - \rightarrow important for hit allocation

Timing measurements

Timewalk

- plateau for large charges (> 15000 e)
- large slope for smaller charges

Spatially resolved efficiency measurements

- · measurement principle and analysis tools established
- easy way to obtain basic and fundamental information

Time resolved efficiency measurements

- timing is important for hit allocation
- timing can be measured very precisely

The End

Thank you for your attention

Spatially resolved hit efficiency

- threshold of discriminator: 3000 e
- injected charge: \approx 6000 e

Spatially resolved hit efficiency

• injected charge: \approx 9000 e

Spatially resolved hit efficiency

Backup GDAC/TDAC - Threshold

Backup GDAC/TDAC - Threshold

Backup FDAC/IF - discharge current

Backup FDAC/IF - discharge current

Backup FDAC/IF - discharge current

Julien Beyer

n+ etched and filled from top

p+ etched and filled

Julien Beyer

Backup ATLAS

Julien Beyer