Quantum corrections to the neutrino and photon deflection in a classical background

Marta Dell'Atti – Università del Salento IMPRS Workshop Munich – 26th October 2015

Introduction

- The Lagrangian of the Standard Model is described in a curved spacetime, with particular attention to the photon and neutrino sector
- Introduction of the semi-classical approach to study the deflection of massless particles
- Computation of the next-to-leading-order corrections
- Application: Gravitational Lensing

Standard Model in a classical background

The gravitational field source is a Schwarzschild black hole

$$d\tau^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} = \left(1 - \frac{2GM}{c^{2}r}\right) c^{2} dt^{2} - \left(1 - \frac{2GM}{c^{2}r}\right)^{-1} dr^{2} - r^{2} d\vartheta^{2} - r^{2} \sin^{2} \vartheta d\phi^{2}$$

for which the event horizon is the Schwarzschild radius $r_{\rm S}=rac{2GM}{c^2}$. From now on $c=1=\hbar$

> The Standard Model Lagrangian is embedded in a curved spacetime with metric $g_{\mu
u} = \eta_{\mu
u} + \kappa h_{\mu
u}$ and action

$$S = \underbrace{\int d^4 x \sqrt{-g} \mathcal{L}_{\mathsf{M}}}_{\mathsf{Matter}} - \underbrace{\frac{1}{\kappa^2} \int d^4 x \sqrt{-g} R}_{\mathsf{Einstein-Hilbert}} + \underbrace{\chi \int d^4 x \sqrt{-g} R h^{\dagger} h}_{\mathsf{Improvement}} + \dots$$

Standard Model in a classical background

Gravitational interactions of matter fields are introduced by minimal coupling

$$\mathcal{L}_{\text{int}} = -\frac{\kappa}{2} T^{\mu\nu} h_{\mu\nu}$$

Bosonic fields

- $\eta_{\mu\nu} \rightarrow g_{\mu\nu}$
- ► $d^4x \rightarrow \sqrt{-g}d^4x$
- $\partial_{\mu} \rightarrow D_{\mu}$, involving affine connection $\Gamma^{\lambda}_{\mu\nu}$

Fermionic fields

- $\eta_{\mu\nu} \rightarrow g_{\mu\nu}$
- ► $d^4x \rightarrow \sqrt{-g}d^4x$
- $\blacktriangleright \ \partial_{\mu} \to D_{\mu}$
- vierbein e^a_μ and spin connection ω^{ab}_μ

Leading order cross section

The S-matrix element is the starting point for the computation of the cross section

$$S_{fi}=-rac{i\kappa}{2}\int d^4x\;h_{\mu
u}(x)\left\langle f|T^{\mu
u}(x)|i
ight
angle$$

Neutrino cross section

$$\frac{d\sigma}{d\Omega}_{\nu}^{(0)} = \left(\frac{GM}{\sin^2(\vartheta/2)}\right)^2 \cos^2 \vartheta/2$$

Photon cross section

$$rac{d\sigma}{d\Omega}^{(0)}_{\gamma} = (GM)^2 \cot^4(artheta/2)$$

Massless particle deflection: classical problem

Figure: Deflection of massless particle P due to the black hole gravitational field

• The deflection angle is
$$\alpha(r_0) = 2 \int_{r_0}^{\infty} \left| \frac{d\phi}{dr} \right| dr - \pi$$

The impact parameter is given by $b = \frac{r_0}{\sqrt{1 - \frac{1}{r_0}}}$ For $r_0 \gg r_S$ $\alpha(b) \sim \frac{4GM}{b}$

Semiclassical approach

From the classical study of a massless particle beam scattered by a central potential

$$b^2(lpha) = 2 \int_{lpha}^{\pi} rac{d\sigma}{d\Omega} \sin artheta dartheta$$

In the neutrino case

$$b_{h,\nu}^2(\alpha) = -1 + \csc^2 \frac{\alpha}{2} + 2\log\left(\sin \frac{\alpha}{2}\right)$$

and for small deflection angles

$$b_{h,\nu}(\alpha) = rac{2}{lpha} + rac{lpha}{6}(1 + \log 8 - 3\log lpha) + \mathcal{O}(lpha^2)$$

For the photon case

$$b_{h,\gamma}^{2}(\alpha) = \frac{1}{2} \left(-1 + \cos \alpha + 2 \csc^{2} \frac{\alpha}{2} + 8 \log \left(\sin \frac{\alpha}{2} \right) \right)$$

and for small deflection angles

$$b_{h,\gamma}(\alpha) = \frac{2}{\alpha} + \alpha \left(\frac{1}{12} - \log 2 + \log \alpha\right) + \mathcal{O}(\alpha^3)$$

Semiclassical approach

From the classical study of a massless particle beam scattered by a central potential

$$b^2(lpha) = 2 \int_{lpha}^{\pi} rac{d\sigma}{d\Omega} \sin artheta dartheta$$

In the neutrino case

$$b_{h,\nu}^2(\alpha) = -1 + \csc^2 \frac{\alpha}{2} + 2\log\left(\sin \frac{\alpha}{2}\right)$$

and for small deflection angles

$$b_{h,\nu}(\alpha) = rac{2}{lpha} + rac{lpha}{6}(1 + \log 8 - 3\log lpha) + \mathcal{O}(lpha^2)$$

For the photon case

$$b_{h,\gamma}^{2}(\alpha) = \frac{1}{2} \left(-1 + \cos \alpha + 2 \csc^{2} \frac{\alpha}{2} + 8 \log \left(\sin \frac{\alpha}{2} \right) \right)$$

and for small deflection angles

$$b_{h,\gamma}(\alpha) = rac{2}{lpha} + lpha \left(rac{1}{12} - \log 2 + \log lpha
ight) + \mathcal{O}(lpha^3)$$

Semiclassical approach

From the classical study of a massless particle beam scattered by a central potential

$$b^2(lpha) = 2 \int_{lpha}^{\pi} rac{d\sigma}{d\Omega} \sin artheta dartheta$$

In the neutrino case

$$b_{h,\nu}^2(\alpha) = -1 + \csc^2 \frac{\alpha}{2} + 2\log\left(\sin \frac{\alpha}{2}\right)$$

and for small deflection angles

$$b_{h,\nu}(\alpha) = \frac{2}{\alpha} + \frac{\alpha}{6} (1 + \log 8 - 3\log \alpha) + \mathcal{O}(\alpha^2) \qquad \qquad \text{For } \alpha \ll 1 \text{ we get}$$

 $b_{
u} = b_{\gamma} \sim \frac{4GM}{\alpha}$

For the photon case

$$b_{h,\gamma}^{2}(\alpha) = \frac{1}{2} \left(-1 + \cos \alpha + 2 \csc^{2} \frac{\alpha}{2} + 8 \log \left(\sin \frac{\alpha}{2} \right) \right)$$

and for small deflection angles

$$b_{h,\gamma}(\alpha) = \frac{2}{\alpha} + \alpha \left(\frac{1}{12} - \log 2 + \log \alpha\right) + \mathcal{O}(\alpha^3)$$

Comparison between classical and semiclassical approach

Figure: Impact parameter in horizon units b_h as a function of deflection angle for the leading order cross section for photon. Analogous results for the neutrino case.

One-loop: neutrino

Figure: Neutrino diagrammatic expansion

The result of the Feynman diagrams computation can be organized as

$$\hat{T}^{\mu\nu} = \hat{T}^{\mu\nu}_Z + \hat{T}^{\mu\nu}_W + \hat{T}^{\mu\nu}_{ct}$$

The next-to-leading-order cross section is, then,

$$\frac{d\sigma}{d\Omega}_{\nu}^{(1)} = (GM)^2 \frac{\cos^2(\vartheta/2)}{\sin^4(\vartheta/2)} \left\{ 1 + \frac{4G_F}{16\pi^2\sqrt{2}} \operatorname{Re}\left[F_{\nu}^{W}(E,\vartheta) + F_{\nu}^{Z}(E,\vartheta) - \frac{1}{4}\Sigma_{L}^{W} - \frac{1}{4}\Sigma_{L}^{Z}\right] \right\}$$

One-loop: photon

Figure: Internal lines are massive Z and W^{\pm} gauge bosons, ϕ^{\pm} Nambu-Goldstone bosons, ghosts and fermions. Diagrams (a), (b) and (c) are triangular, (d) and (e) are *t-bubble*. Diagram (f) is a *s-bubble*, (g) is a *tadpole*.

The photon cross section is $\frac{d\sigma}{d\Omega}^{(1)}_{\gamma} = (GM)^2 \cot^4(\vartheta/2) \left[1 + \operatorname{Re}\overline{\Phi}_3\right]$

One-loop cross section

Figure: Differential neutrino and photon cross section in r_S units to the leading order (tree-level) and next-to-leading-order (one-loop).

Gravitational lensing

Figure: Deflection of the trajectory of a particle subjected to a gravitational lens. Arrows represent directions of the optical ray, the approximation of the real curved ray.

Reference

C. Corianò, A. Costantini, M. Dell'Atti, and L. Delle Rose. "Neutrino and Photon Lensing by Black Holes: Radiative Lens Equations and Post-Newtonian Contributions" Journal of High Energy Physics 2015:160 (Jul. 2015).

With the thin lens approximation the lens equation reads

$$\beta = \vartheta_{\mathsf{I}} - \frac{D_{\mathsf{LS}}}{D_{\mathsf{S}}}\alpha(b)$$

The Virbhadra-Ellis lens equation is

$$an eta = an artheta - rac{D_{LS}}{D_{S}} \left(an artheta_{I} + an(lpha(b) - artheta_{I})
ight)$$

In the neutrino case, to the leading order, we have

$$\alpha = \frac{2}{b_{h,\nu}} - \frac{2}{b_{h,\nu}^3} \left(\log b_{h,\nu} + \frac{1}{3} \right) + \frac{3}{b_{h,\nu}^5} \left(\log^2 b_{h,\nu} - \frac{1}{5} \right) + \mathcal{O}(1/b_{h,\nu}^7)$$

while for the photon

$$\alpha = \frac{2}{b_{h,\gamma}} + \frac{1}{b_{h,\gamma}^3} \left(\frac{1}{3} - 4\log b_{h,\gamma} \right) + \frac{1}{b_{h,\gamma}^5} \left(-\frac{17}{20} - 10\log b_{h,\gamma} + 12\log^2 b_{h,\gamma} \right) + \mathcal{O}(1/b_{h,\gamma}^7)$$

▶ The classical deflection angle can be expanded for $b_h \gg 1$

$$\alpha = \frac{a_1}{b_h} + \frac{a_2}{b_h^2} + \frac{a_3}{b_h^3} + \frac{a_4}{b_h^4} + \frac{a_5}{b_h^5} + \cdots$$

The general expression is given by

$$\alpha = \frac{2}{b_h} + \sum_{k=1}^{\infty} \frac{a_{2k}}{b_h^{2k}} + \sum_{k=1}^{\infty} \frac{1}{b_h^{2k+1}} \left(a_{2k+1} + d_0 \log b_h + d_1 \log^2 b_h + \cdots \right)$$

In the neutrino case, to the leading order, we have

$$\alpha = \frac{2}{b_{h,\nu}} - \frac{2}{b_{h,\nu}^3} \left(\log b_{h,\nu} + \frac{1}{3} \right) + \frac{3}{b_{h,\nu}^5} \left(\log^2 b_{h,\nu} - \frac{1}{5} \right) + \mathcal{O}(1/b_{h,\nu}^7)$$

while for the photon

$$\alpha = \frac{2}{b_{h,\gamma}} + \frac{1}{b_{h,\gamma}^3} \left(\frac{1}{3} - 4\log b_{h,\gamma} \right) + \frac{1}{b_{h,\gamma}^5} \left(-\frac{17}{20} - 10\log b_{h,\gamma} + 12\log^2 b_{h,\gamma} \right) + \mathcal{O}(1/b_{h,\gamma}^7)$$

▶ The classical deflection angle can be expanded for $b_h \gg 1$

$$\alpha = \frac{a_1}{b_h} + \frac{a_2}{b_h^2} + \frac{a_3}{b_h^3} + \frac{a_4}{b_h^4} + \frac{a_5}{b_h^5} + \cdots$$

The general expression is given by

$$\alpha = \frac{2}{b_h} + \sum_{k=1}^{\infty} \frac{a_{2k}}{b_h^{2k}} + \sum_{k=1}^{\infty} \frac{1}{b_h^{2k+1}} \left(a_{2k+1} + a_0 \log b_h + a_1 \log^2 b_h + \cdots \right)$$

In the neutrino case, to the leading order, we have

$$\alpha = \frac{2}{b_{h,\nu}} - \frac{2}{b_{h,\nu}^3} \left(\log b_{h,\nu} + \frac{1}{3} \right) + \frac{3}{b_{h,\nu}^5} \left(\log^2 b_{h,\nu} - \frac{1}{5} \right) + \mathcal{O}(1/b_{h,\nu}^7)$$

while for the photon

$$\alpha = \frac{2}{b_{h,\gamma}} + \frac{1}{b_{h,\gamma}^3} \left(\frac{1}{3} - 4\log b_{h,\gamma} \right) + \frac{1}{b_{h,\gamma}^5} \left(-\frac{17}{20} - 10\log b_{h,\gamma} + 12\log^2 b_{h,\gamma} \right) + \mathcal{O}(1/b_{h,\gamma}^7)$$

▶ The classical deflection angle can be expanded for $b_h \gg 1$

$$\alpha = \frac{a_1}{b_h} + \frac{a_2}{b_h^2} + \frac{a_3}{b_h^3} + \frac{a_4}{b_h^4} + \frac{a_5}{b_h^5} + \cdots$$

The general expression is given by

$$\alpha = \frac{2}{b_h} + \sum_{k=1}^{\infty} \frac{a_{2k}}{b_h^{2k}} + \sum_{k=1}^{\infty} \frac{1}{b_h^{2k+1}} \left(a_{2k+1} + a_0 \log b_h + a_1 \log^2 b_h + \cdots \right)$$

In the neutrino case, to the leading order, we have

$$\alpha = \frac{2}{b_{h,\nu}} - \frac{2}{b_{h,\nu}^3} \left(\log b_{h,\nu} + \frac{1}{3} \right) + \frac{3}{b_{h,\nu}^5} \left(\log^2 b_{h,\nu} - \frac{1}{5} \right) + \mathcal{O}(1/b_{h,\nu}^7)$$

while for the photon

$$\alpha = \frac{2}{b_{h,\gamma}} + \frac{1}{b_{h,\gamma}^3} \left(\frac{1}{3} - 4\log b_{h,\gamma} \right) + \frac{1}{b_{h,\gamma}^5} \left(-\frac{17}{20} - 10\log b_{h,\gamma} + 12\log^2 b_{h,\gamma} \right) + \mathcal{O}(1/b_{h,\gamma}^7)$$

▶ The classical deflection angle can be expanded for $b_h \gg 1$

$$\alpha = \frac{a_1}{b_h} + \frac{a_2}{b_h^2} + \frac{a_3}{b_h^3} + \frac{a_4}{b_h^4} + \frac{a_5}{b_h^5} + \cdots$$

The general expression is given by

$$\alpha = \frac{2}{b_h} + \sum_{k=1}^{\infty} \frac{a_{2k}}{b_h^{2k}} + \sum_{k=1}^{\infty} \frac{1}{b_h^{2k+1}} \left(a_{2k+1} + d_0 \log b_h + d_1 \log^2 b_h + \cdots \right)$$

Including quantum corrections $\alpha = \alpha(E)$ produces a gravitational rainbow.

Photon source: images

Figure: Source angular position β as a function of image angular position ϑ_I for a photon source at $D_S = 11$ kpc far from the observer in presence of a gravitational lens with mass $M = 10^6 M_{\odot}$ and $D_L = 10$ kpc. In (a) the behaviour for both primary and secondary images is shown, (b) and (c) refer respectively to secondary and primary image.

Photon source: magnification

Figure: Magnification μ as a function of image position ϑ_I for a photon source at $D_S = 11$ kpc far from the observer in presence of a gravitational lens with mass $M = 10^6 M_{\odot}$ and $D_L = 10$ kpc. In (a) for primary and secondary images, (b) and (c) focus on secondary and primary image respectively.

Neutrino source: images

Figure: Source angular position β as a function of image angular position ϑ_l for a neutrino source at $D_S = 11$ kpc far from the observer in presence of a gravitational lens with mass $M = 10^6 M_{\odot}$ and $D_L = 10$ kpc. In (a) both of images, (b) is a particular of the secondary image, (c) of the primary image.

Neutrino source: magnification

Figure: Magnification μ as a function of image position ϑ_I for a neutrino source at $D_L = 10$ kpc in presence of a gravitational lens with mass $M = 10^6 M_{\odot}$ and $D_L = 10$ kpc.

Modified Virbadhra-Ellis lens

Figure: Magnification μ and β as functions of image position ϑ_l in presence of a gravitational lens with mass $M = 4 \times 10^6 M_{\odot}$ at $D_{\rm L} = 8$ kpc, and the distance between the lens and the source of $D_{\rm LS} = 1$ mpc.

Post-newtonian corrections

The generic form of the metric with isotropic coordinates is

$$d\tau^{2} = \tilde{A}(\tilde{r})d\tilde{t}^{2} - \tilde{B}(\tilde{r})\left[d\tilde{r}^{2} - \tilde{r}^{2}\left(d\tilde{\vartheta}^{2} + \sin^{2}\tilde{\vartheta}d\tilde{\varphi}^{2}\right)\right]$$

and the post-newtonian expansion for the coefficients is given by

$$\begin{split} \tilde{A}(\tilde{r}) \simeq 1 + 2\tilde{\Phi} + 2\tilde{\Phi}^2 + \frac{3}{2}\tilde{\Phi}^3 \\ \tilde{B}(\tilde{r}) \simeq 1 - 2\tilde{\Phi} + \frac{3}{2}\tilde{\Phi}^2 - \frac{1}{2}\tilde{\Phi}^3 \end{split}$$

The leading order cross section reads

$$\frac{d\sigma}{d\Omega}_{2PN}^{(0)} = \mathcal{K}(E,\vartheta)_{2PN} \ \frac{d\sigma}{d\Omega}_{0PN}^{(0)}$$

The impact parameter to the IPN order for the neutrino is

$$b^{2}(\alpha)_{\nu 1PN} = 4(GM)^{2} \left(-1 + \csc^{2}\frac{\alpha}{2} + 2\log\sin\frac{\alpha}{2}\right) \\ + \pi E(GM)^{3} \left(4 + (\cos\alpha - 3)\csc\frac{\alpha}{2}\right) - \frac{\pi^{2}}{32}E^{2}(GM)^{4} \left(1 + \cos\alpha + 4\sin\frac{\alpha}{2}\right)$$

Conclusions and perspectives

- > The semiclassical approach allows to give a first sight of quantum gravity effects
- Possible extension to different metrics, more general than the Shwarzschild metric
- An interesting feature is the gravitational rainbow and as a consequence the modified lens equations
- Using the modified Virbhadra-Ellis lens equation one could deepen the study of relativistic images

Bibliography

