A Flux-Scaling Scenario for High-Scale Moduli Stabilization in String Theory

Yuta Sekiguchi

LMU and MPI for Physics, Munich
IMPRS Workshop on October 26, 2015
based on: Nucl.Phys. B897(2015) 500-554
Blumenhagen, Font, Plauschinn, Fuchs, Herschmann, Wolf, Sekiguchi

Contents

- Introduction
- Motivation for String Phenomenology
- String Compactifications
- Framework
- Moduli Space and Moduli Stabilization
- Various Fluxes
- The flux-induced Scalar Potential and Superpotential
- Flux-Scaling Scenario
- A representative example
- Soft masses
- Conclusion and Outlook

Motivation for String Phenomenology

According to the recent observations,

$$
\text { a tensor-to-scalar ratio: } \quad r=0.2 \text { [BICEP2 '14] and } r<0.11 \text { [PLANCK '15] }
$$

Also, Lyth bound given by

$$
\frac{\Delta \phi}{M_{\mathrm{Pl}}}=O(1) \sqrt{\frac{r}{0.01}}
$$

Motivation for String Phenomenology

According to the recent observations,
a tensor-to-scalar ratio: $\quad r=0.2$ [BICEP2 '14] and $r<0.11$ [PLANCK'15]
Also, Lyth bound given by

$$
\frac{\Delta \phi}{M_{\mathrm{Pl}}}=O(1) \sqrt{\frac{r}{0.01}}
$$

has yet to exclude large-field inflation:

$$
M_{\mathrm{inf}} \sim M_{\mathrm{GUT}}
$$

Motivation for String Phenomenology

According to the recent observations,
a tensor-to-scalar ratio: $\quad r=0.2$ [BICEP2 '14] and $r<0.11$ [PLANCK'15]
Also, Lyth bound given by

$$
\frac{\Delta \phi}{M_{\mathrm{Pl}}}=O(1) \sqrt{\frac{r}{0.01}}
$$

has yet to exclude large-field inflation:

$$
M_{\mathrm{inf}} \sim M_{\mathrm{GUT}}
$$

String theory $=\mathrm{a}$ UV complete theory of quantum gravity

\rightarrow can provide a nice framework to reflect on high-scale inflation.
In particular, axions are naturally derived from string theory compactifications and can provide axion monodromy inflation.

Motivation for String Phenomenology

According to the recent observations,
a tensor-to-scalar ratio: $\quad r=0.2$ [BICEP2 '14] and $r<0.11$ [PLANCK '15]
Also, Lyth bound given by

$$
\frac{\Delta \phi}{M_{\mathrm{Pl}}}=O(1) \sqrt{\frac{r}{0.01}}
$$

has yet to exclude large-field inflation:

$$
M_{\mathrm{inf}} \sim M_{\mathrm{GUT}}
$$

String theory $=$ a UV complete theory of quantum gravity

\rightarrow can provide a nice framework to reflect on high-scale inflation.
In particular, axions are naturally derived from string theory compactifications
and can provide axion monodromy inflation.
[Hebecker, Kraus, Witkowski '14, Blumenhagen, Plauschinn '14, Marchesano, Shiu, Uranga '14]

- Consider the mechanism to generate axion monodromy inflation in string theory !! \rightarrow study moduli stabilization !!
- Wish: Implications from string theory fit observables in current or future experiments.

String Compactifications

Superstring theory is consistent with 10 dimensions.

String Compactifications

Superstring theory is consistent with 10 dimensions.
\rightarrow reasonable ansatz: $10=4+6$

6-dim.
Compact
Space

String Compactifications

Superstring theory is consistent with 10 dimensions.
\rightarrow reasonable ansatz: $10=4+6$

Compactification space: choose Calabi- Y au threefold (СҮ3)
Focus on massless spectrum:
$\rightarrow N=1$ Supergravity(SUGRA) in 4-dims.

Moduli Space and Moduli Stabilization

- Parameters of the compact space
- obtained by the metric deformation of CY
$g_{m n} \rightarrow g_{m n}+\delta g_{m n}, \quad R_{m n}(g+\delta g)=0$.
(while preserving CY properties)

Moduli Space and Moduli Stabilization

- Parameters of the compact space
- obtained by the metric deformation of CY

$$
g_{m n} \rightarrow g_{m n}+\delta g_{m n}, \quad R_{m n}(g+\delta g)=0
$$

(while preserving CY properties)

Moduli Space and Moduli Stabilization

- Parameters of the compact space
- obtained by the metric deformation of CY

$$
g_{m n} \rightarrow g_{m n}+\delta g_{m n}, \quad R_{m n}(g+\delta g)=0
$$

(while preserving CY properties)

		axionic		saxionic	[Grimm, Louis '04]
S	$=$	s	+	$i c$	axio-dilaton
U^{i}	$=$	v^{i}	$+$	$i u^{i}$	complex structure
T_{α}	$=$	τ_{α}	$+$	$i \rho_{\alpha}+\ldots$	Kähler
G^{a}	$=$	$S b^{a}$	$+$	$i c^{a}$	axionic odd

Moduli appear as massless complex scalar fields in 4 dims.

- not discovered in the experiments
- spoils the predictivity of the theory
\rightarrow Want to make them as massive as we wish ,or "stabilize" them. of Moduli !!

Fluxes

From the field-content in type IIB string theory, we can construct the field strength. The field strength defines a non-trivial cohomology class.

- field strength configuration on the CY_{3}

Flux - obtained via integration of the field strength over the nontrivial cycles, branes etc.

Fluxes

From the field-content in type IIB string theory, we can construct the field strength. The field strength defines a non-trivial cohomology class.

- field strength configuration on the CY_{3}

Flux - obtained via integration of the field strength over the nontrivial cycles, branes etc.

Electrodynamics
 String theory

Field
A_{1}

$$
F_{2}=d A_{1}
$$

Field strengh
Flux (Flux charge) $\quad \int_{\Sigma} F_{2}$
e.g. C_{2}, B_{2}

$$
F_{3}=d C_{2}, H_{3}=d B_{2}
$$

$$
\int_{\gamma} F_{3}, \int_{\Sigma_{3}} H_{3}
$$

Fluxes

From the field-content in type IIB string theory, we can construct the field strength. The field strength defines a non-trivial cohomology class.

- field strength configuration on the CY_{3}

Flux - obtained via integration of the field strength over the nontrivial cycles, branes etc.

$$
\begin{array}{lcc}
& \text { Electrodynamics } & \text { String theory } \\
\text { Field } & A_{1} & \text { e.g. } C_{2}, B_{2} \\
\text { Field strengh } & F_{2}=d A_{1} & F_{3}=d C_{2}, H_{3}=d B_{2} \\
\text { Flux (Flux charge) } & \int_{\Sigma} F_{2} & \int_{\gamma} F_{3}, \int_{\Sigma_{3}} H_{3}
\end{array}
$$

$$
\int_{\Sigma_{3}} H_{3} \sim h \in \mathbb{Z}
$$

Geometric and Non-geometric Fluxes

arise from $\mathrm{T}^{\text {-duality: }}$
...equivalent physics between R and the inverse of R
(can be extended to Buscher rule)

Geometric and Non-geometric Fluxes

arise from $\mathrm{T}_{\text {-duality: }}$
...equivalent physics between R and the inverse of R
(can be extended to Buscher rule)
T-duality chain: shelon, Taylor, wehtr orl

$$
H_{x y z} \xrightarrow{T^{x}} F_{y z}^{x} \xrightarrow{T^{y}} Q^{x y} z \xrightarrow{T^{z}} R^{x y z}
$$

Geometric and Non-geometric Fluxes

arise from $\mathrm{T}_{\text {-duality: }}$
...equivalent physics between R and the inverse of R
(can be extended to Buscher rule)
T-duality chain: Shelon, Taylor, wechr or]

Geometric and Non-geometric Fluxes

arise from T -duality:
...equivalent physics between R and the inverse of R
(can be extended to Buscher rule)
T-duality chain: shelon, Taylor, wehtr orl

$$
H_{x y z} \xrightarrow{T^{x}} F_{y z}^{x} \xrightarrow{T^{y}} Q^{x y} z \xrightarrow{T^{z}} R^{x y z}
$$

Twisted differential:

$$
d \longrightarrow \mathcal{D}=d-H \wedge-F \circ-Q \bullet-R\llcorner
$$

S-dual non-geometric P-flux natanatectat osc son

$$
\begin{aligned}
& \text { arises from } S \text {-duality: } \quad S \rightarrow \frac{a S-i b}{i c S+d}, \quad\binom{C_{2}}{B_{2}} \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{C_{2}}{B_{2}} \\
& =S L(2, \mathbb{Z}) \text { symmetry } \\
& \text { of the effective action }
\end{aligned}
$$

S-dual non-geometric P-flux [aldazabal etal. o6, 10]

$$
\begin{aligned}
& \text { arises from } S \text {-duality: } \quad S \rightarrow \frac{a S-i b}{i c S+d}, \quad\binom{C_{2}}{B_{2}} \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{C_{2}}{B_{2}} \\
& =S L(2, \mathbb{Z}) \text { symmetry } \\
& \text { of the effective action }
\end{aligned}
$$

For the S-duality invariance, we need a counter-part for non-geom. Q-flux in the $\operatorname{SL}(2, Z)$ doublet:

$$
\binom{Q}{P} \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{Q}{P}
$$

Geometric and non-geometric fluxes are incorporated into the superpotential !!

The F-term scalar potential

The scalar potential in N=1 4-dim. Supergravity:

$$
V=\frac{M_{\mathrm{Pl}}^{4}}{4 \pi} e^{K}\left(K^{I \bar{J}} D_{I} W D_{\bar{J}} \bar{W}-3|W|^{2}\right)
$$

with
Kähler potential:

$$
K=-\ln \left(-i \int \Omega \wedge \bar{\Omega}\right)-\ln (S+\bar{S})-2 \ln \mathcal{V}
$$

Covariant derivative:

$$
D_{I} W=\partial_{I} W+\left(\partial_{I} K\right) W
$$

The flux-induced superpotential Canow, vata, ween out

$$
\left.\begin{array}{rl}
W=\int_{C Y_{3}}[\mathfrak{F}+(d-H & \left.\wedge) \Phi_{\mathrm{c}}^{\mathrm{ev}}\right]_{3}
\end{array}\right) \Omega \mathrm{S} .
$$

The flux-induced superpotential
geom.
non-geom. fluxes

$$
\begin{aligned}
W=\int_{C Y_{3}}\left[\mathfrak{F}+\mathcal{D} \Phi_{\mathrm{c}}^{\mathrm{ev}}\right]_{3} & \wedge \Omega \\
& \mathfrak{F}=\left\langle d C_{2}\right\rangle, \quad \Phi_{\mathrm{c}}^{\mathrm{ev}}=i S-i G^{a} \omega_{a}-i T_{\alpha} \tilde{\omega}^{\alpha}
\end{aligned}
$$

The flux-induced superpotential

$$
\begin{aligned}
W=\int_{C Y_{3}}\left[\mathfrak{F}+\mathcal{D} \Phi_{\mathrm{c}}^{\mathrm{ev}}\right]_{3} & \wedge \Omega \\
& \mathfrak{F}=\left\langle d C_{2}\right\rangle, \quad \Phi_{\mathrm{c}}^{\mathrm{ev}}=i S-i G^{a} \omega_{a}-i T_{\alpha} \tilde{\omega}^{\alpha}
\end{aligned}
$$

+ S-dual covariance

$$
\begin{aligned}
W= & -\left(\mathfrak{f}_{\lambda} X^{\lambda}-\tilde{\mathfrak{f}}^{\lambda} F_{\lambda}\right)+i S\left(h_{\lambda} X^{\lambda}-\tilde{h}^{\lambda} F_{\lambda}\right) \\
& -i G^{a}\left(f_{\lambda a} X^{\lambda}-\tilde{f}^{\lambda}{ }_{a} F_{\lambda}\right)+i T_{\alpha}\left(q_{\lambda}{ }^{\alpha} X^{\lambda}-\tilde{q}^{\lambda \alpha} F_{\lambda}\right) \\
& +\left(S T_{\alpha}+\frac{1}{2} \kappa_{\alpha b c} G^{b} G^{c}\right)\left(p_{\lambda}{ }^{\alpha} X^{\lambda}-\tilde{p}^{\lambda \alpha} F_{\lambda}\right) \text { extra term (quadratic)!! }
\end{aligned}
$$

The flux-induced superpotential

$$
W=\int_{C Y_{3}}\left[\mathfrak{F}+\mathcal{D} \Phi_{\mathrm{c}}^{\mathrm{ev}}\right]_{3} \wedge \Omega
$$

$$
\mathfrak{F}=\left\langle d C_{2}\right\rangle, \quad \Phi_{\mathrm{c}}^{\mathrm{ev}}=i S-i G^{a} \omega_{a}-i T_{\alpha} \tilde{\omega}^{\alpha}
$$

+ S-dual covariance

$$
\begin{aligned}
W= & -\left(f_{\lambda} X^{\lambda}-\tilde{f}^{\lambda} F_{\lambda}\right)+i S\left(h_{\lambda} X^{\lambda}-\tilde{h}^{\lambda} F_{\lambda}\right) \\
& -i G^{a}\left(f_{\lambda a} X^{\lambda}-\tilde{f}^{\lambda}{ }_{a} F_{\lambda}\right)+i T_{\alpha}\left(q_{\lambda}{ }^{\alpha} X^{\lambda}-\tilde{q}^{\lambda \alpha} F_{\lambda}\right) \\
& +\left(S T_{\alpha}+\frac{1}{2} \kappa_{\alpha b c} G^{b} G^{c}\right)\left(p_{\lambda}{ }^{\alpha} X^{\lambda}-\tilde{p}^{\lambda \alpha} F_{\lambda}\right)
\end{aligned}
$$

Flux-Scaling Scenario

A representative example:

$$
\begin{aligned}
K & =-3 \ln (T+\bar{T})-\ln (S+\bar{S}) \sum \mathfrak{f}, h \\
W & =i \tilde{\mathfrak{f}}+i h S+i q T \\
& =i \tilde{\mathfrak{f}}+i h s+i q \tau-\underbrace{(h c+q \rho)}_{\equiv \theta \text {-trick }}
\end{aligned}
$$

Flux-Scaling Scenario

A representative example:

$$
\begin{aligned}
K & =-3 \ln (T+\bar{T})-\ln (S+\bar{S}) \sum \mathfrak{f}, h, \\
W & =i \tilde{\mathfrak{f}}+i h S+i q T \\
& =i \tilde{f}+i h s+i q \tau-\underbrace{(h c+q \rho)}_{\equiv \theta \text {-trick }}
\end{aligned}
$$

\rightarrow The resulting scalar potential:

$$
V=\frac{M_{\mathrm{Pl}}^{4}}{4 \pi \cdot 2^{4}}\left[\frac{(h s-\tilde{\mathfrak{f}})^{2}}{s \tau^{3}}-\frac{6 h q s+2 q \tilde{\mathfrak{f}}}{s \tau^{2}}-\frac{5 q^{2}}{3 s \tau}+\frac{\theta^{2}}{s \tau^{3}}\right]
$$

it The axionic linear combination orthogonal to θ is not stabilised!!

Flux-Scaling Scenario

A representative example:

$$
\begin{aligned}
K & =-3 \ln (T+\bar{T})-\ln (S+\bar{S}) \sum \mathfrak{f}, h \\
W & =i \tilde{\mathfrak{f}}+i h S+i q T \\
& =i \tilde{f}+i h s+i q \tau-\underbrace{(h c+q \rho)}_{\equiv \theta \text {-trick }}
\end{aligned}
$$

\rightarrow The resulting scalar potential:

$$
\tilde{\mathfrak{f}}, h, q \in \mathbb{Z}
$$

$$
V=\frac{M_{\mathrm{Pl}}^{4}}{4 \pi \cdot 2^{4}}\left[\frac{(h s-\tilde{\mathfrak{f}})^{2}}{s \tau^{3}}-\frac{6 h q s+2 q \tilde{\mathfrak{f}}}{s \tau^{2}}-\frac{5 q^{2}}{3 s \tau}+\frac{\theta^{2}}{s \tau^{3}}\right]
$$

it The axionic linear combination orthogonal to θ is not stabilised!!
Check:

- minimal point (vacuum) and minimum:

$$
\begin{aligned}
& \frac{\partial V}{\partial \bullet}=0, \quad V_{\min } ? \quad \text { if }<0 \rightarrow \text { AdS!! } \\
& D_{I} W \neq 0 ? \\
& \frac{\partial^{2} V}{\partial \bullet \partial \circ} \lessgtr 0 ?
\end{aligned}
$$

- F-term supersymmetry breaking:
- tachyon-free (stability):
- mass eigenvalues.

Flux-Scaling Scenario

We found a non-supersymmetric AdS minimum: $\quad(s, \tau, \theta)=\left(-\frac{\tilde{\mathfrak{f}}}{h},-\frac{6 \tilde{\mathfrak{f}}}{5 q}, 0\right)$

$$
V_{\min }=-\frac{50}{27} \frac{h q^{3}}{\tilde{\mathfrak{f}}^{2}} \frac{M_{\mathrm{Pl}}^{4}}{4 \pi \cdot 2^{4}}<0(\mathrm{AdS})
$$

Flux-Scaling Scenario

We found a non-supersymmetric AdS minimum:

$$
(s, \tau, \theta)=\left(-\frac{\tilde{\mathfrak{f}}}{h},-\frac{6 \tilde{\mathfrak{f}}}{5 q}, 0\right)
$$

Also,

$$
V_{\min }=-\frac{50}{27} \frac{h q^{3}}{\tilde{\mathfrak{f}}^{2}} \frac{M_{\mathrm{Pl}}^{4}}{4 \pi \cdot 2^{4}}<0(\mathrm{AdS})
$$

- Tachyon-free \boldsymbol{V}
- Mass eigenstates:
- the same flux-scale
- one lightest axion!! $M_{\mathrm{mod}, i}^{2}=\mu_{i} \frac{h q^{3}}{\tilde{\mathfrak{f}}^{2}} \frac{M_{\mathrm{Pl}}^{2}}{4 \pi \cdot 2^{4}}, \quad \mu_{i} \approx(\underbrace{6.2,1.7}_{\text {saxionic }} ; \underbrace{3.4,0}_{\text {axionic }})$
- Gravitino mass:

$M_{\frac{3}{2}}^{2} \approx 0.833 \frac{h q^{3}}{\tilde{\mathfrak{f}}^{2}} \frac{M_{\mathrm{Pl}}^{2}}{4 \pi \cdot 2^{4}}$
high-scale susy breaking!

Flux-Scaling Scenario

We found a non-supersymmetric AdS minimum:

$$
(s, \tau, \theta)=\left(-\frac{\tilde{\mathfrak{f}}}{h},-\frac{6 \tilde{\mathfrak{f}}}{5 q}, 0\right)
$$

$$
V_{\min }=-\frac{50}{27} \frac{h q^{3}}{\tilde{\mathfrak{f}}^{2}} \frac{M_{\mathrm{Pl}}^{4}}{4 \pi \cdot 2^{4}}<0(\mathrm{AdS})
$$

Also,

- Tachyon-free \boldsymbol{V}
- Mass eigenstates:
- the same flux-scale
- one lightest axion!! $M_{\mathrm{mod}, i}^{2}=\mu_{i} \frac{h q^{3}}{\tilde{\mathfrak{f}}^{2}} \frac{M_{\mathrm{Pl}}^{2}}{4 \pi \cdot 2^{4}}, \quad \mu_{i} \approx(\underbrace{6.2,1.7}_{\text {saxionic }} ; \underbrace{3.4,0}_{\text {axionic }})$
- Gravitino mass:

$$
M_{\frac{3}{2}}^{2} \approx 0.833 \frac{h q^{3}}{\tilde{\mathfrak{f}}^{2}} \frac{M_{\mathrm{Pl}}^{2}}{4 \pi \cdot 2^{4}}
$$

high-scale susy breaking!

Additionally,

Soft masses in sequestered scenario:

- Gravity-mediated gaugino masses: $\quad M_{a} \sim\left(\frac{q}{h}\right)^{\frac{3}{4}} M_{\frac{3}{2}} \sim\left(\frac{M_{K K}}{M_{s}}\right)^{6} M_{\frac{3}{2}}$

- Anomaly-mediated gaugino masses:

$$
M_{a}^{\text {anom }} \sim \frac{M_{\mathrm{KK}}}{M_{\mathrm{Pl}}} M_{\frac{3}{2}}
$$

Conclusions and Outlook

Conclusions:

In the type IIB Calabi-Yau orientifold including (non-)geometric fluxes,

- Systematically analyzed the flux-induced scalar potential yielding nonsupersymmetric AdS minima, where moduli and the mass scale can be parametrically controlled.
- Stabilized almost all the moduli except some massless axions
- Obtained the suppressed gaugino masses relative to the gravitino mass

Open questions:

- Uplift to stable dS-vacua ? \rightarrow [Blumenhagen, Damian, Font, Herschmann, Sun '15]
- Uplift to a 10D full solution of string theory?
- Inclusion of KK-mass and string states ?

Thank you!

